Revisiting random deposition with surface relaxation: Approaches from growth rules to Edwards-Wilkinson equation

Autores
Buceta, Ruben Carlos; Hansmann, David; Von Haeften, B.
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present several approaches for deriving the coarse-grained continuous Langevin equation (or Edwards-Wilkinson equation) from a random deposition with surface relaxation (RDSR) model. First we introduce a novel procedure to divide the first transition moment into the three fundamental processes involved: deposition, diffusion and volume conservation. We show how the diffusion process is related to antisymmetric contribution and the volume conservation process is related to symmetric contribution, which renormalizes to zero in the coarse-grained limit. In another approach, we find the coefficients of the continuous Langevin equation, by regularizing the discrete Langevin equation. Finally, in a third approach, we derive these coefficients from the set of test functions supported by the stationary probability density function (SPDF) of the discrete model. The applicability of the used approaches to other discrete random deposition models with instantaneous relaxation to a neighboring site is discussed.
Fil: Buceta, Ruben Carlos. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Hansmann, David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Von Haeften, B.. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Materia
random deposition with surface relaxation
RDSR
coarse-grained approaches
Langevin equations
continuous Langevin equation coefficients
generalized function theory
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/8255

id CONICETDig_2d64b5e4bef289df9ee6414afc11bfc7
oai_identifier_str oai:ri.conicet.gov.ar:11336/8255
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Revisiting random deposition with surface relaxation: Approaches from growth rules to Edwards-Wilkinson equationBuceta, Ruben CarlosHansmann, DavidVon Haeften, B.random deposition with surface relaxationRDSRcoarse-grained approachesLangevin equationscontinuous Langevin equation coefficientsgeneralized function theoryhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present several approaches for deriving the coarse-grained continuous Langevin equation (or Edwards-Wilkinson equation) from a random deposition with surface relaxation (RDSR) model. First we introduce a novel procedure to divide the first transition moment into the three fundamental processes involved: deposition, diffusion and volume conservation. We show how the diffusion process is related to antisymmetric contribution and the volume conservation process is related to symmetric contribution, which renormalizes to zero in the coarse-grained limit. In another approach, we find the coefficients of the continuous Langevin equation, by regularizing the discrete Langevin equation. Finally, in a third approach, we derive these coefficients from the set of test functions supported by the stationary probability density function (SPDF) of the discrete model. The applicability of the used approaches to other discrete random deposition models with instantaneous relaxation to a neighboring site is discussed.Fil: Buceta, Ruben Carlos. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Hansmann, David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Von Haeften, B.. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaIop Publishing2014-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/8255Buceta, Ruben Carlos; Hansmann, David; Von Haeften, B.; Revisiting random deposition with surface relaxation: Approaches from growth rules to Edwards-Wilkinson equation; Iop Publishing; Journal Of Statistical Mechanics: Theory And Experiment; 12; 28; 12-2014; 1-161742-5468enginfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/1742-5468/2014/12/P12028/info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/2014/12/P12028info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1409.7463v2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:44:14Zoai:ri.conicet.gov.ar:11336/8255instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:44:14.577CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Revisiting random deposition with surface relaxation: Approaches from growth rules to Edwards-Wilkinson equation
title Revisiting random deposition with surface relaxation: Approaches from growth rules to Edwards-Wilkinson equation
spellingShingle Revisiting random deposition with surface relaxation: Approaches from growth rules to Edwards-Wilkinson equation
Buceta, Ruben Carlos
random deposition with surface relaxation
RDSR
coarse-grained approaches
Langevin equations
continuous Langevin equation coefficients
generalized function theory
title_short Revisiting random deposition with surface relaxation: Approaches from growth rules to Edwards-Wilkinson equation
title_full Revisiting random deposition with surface relaxation: Approaches from growth rules to Edwards-Wilkinson equation
title_fullStr Revisiting random deposition with surface relaxation: Approaches from growth rules to Edwards-Wilkinson equation
title_full_unstemmed Revisiting random deposition with surface relaxation: Approaches from growth rules to Edwards-Wilkinson equation
title_sort Revisiting random deposition with surface relaxation: Approaches from growth rules to Edwards-Wilkinson equation
dc.creator.none.fl_str_mv Buceta, Ruben Carlos
Hansmann, David
Von Haeften, B.
author Buceta, Ruben Carlos
author_facet Buceta, Ruben Carlos
Hansmann, David
Von Haeften, B.
author_role author
author2 Hansmann, David
Von Haeften, B.
author2_role author
author
dc.subject.none.fl_str_mv random deposition with surface relaxation
RDSR
coarse-grained approaches
Langevin equations
continuous Langevin equation coefficients
generalized function theory
topic random deposition with surface relaxation
RDSR
coarse-grained approaches
Langevin equations
continuous Langevin equation coefficients
generalized function theory
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present several approaches for deriving the coarse-grained continuous Langevin equation (or Edwards-Wilkinson equation) from a random deposition with surface relaxation (RDSR) model. First we introduce a novel procedure to divide the first transition moment into the three fundamental processes involved: deposition, diffusion and volume conservation. We show how the diffusion process is related to antisymmetric contribution and the volume conservation process is related to symmetric contribution, which renormalizes to zero in the coarse-grained limit. In another approach, we find the coefficients of the continuous Langevin equation, by regularizing the discrete Langevin equation. Finally, in a third approach, we derive these coefficients from the set of test functions supported by the stationary probability density function (SPDF) of the discrete model. The applicability of the used approaches to other discrete random deposition models with instantaneous relaxation to a neighboring site is discussed.
Fil: Buceta, Ruben Carlos. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Hansmann, David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Von Haeften, B.. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
description We present several approaches for deriving the coarse-grained continuous Langevin equation (or Edwards-Wilkinson equation) from a random deposition with surface relaxation (RDSR) model. First we introduce a novel procedure to divide the first transition moment into the three fundamental processes involved: deposition, diffusion and volume conservation. We show how the diffusion process is related to antisymmetric contribution and the volume conservation process is related to symmetric contribution, which renormalizes to zero in the coarse-grained limit. In another approach, we find the coefficients of the continuous Langevin equation, by regularizing the discrete Langevin equation. Finally, in a third approach, we derive these coefficients from the set of test functions supported by the stationary probability density function (SPDF) of the discrete model. The applicability of the used approaches to other discrete random deposition models with instantaneous relaxation to a neighboring site is discussed.
publishDate 2014
dc.date.none.fl_str_mv 2014-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/8255
Buceta, Ruben Carlos; Hansmann, David; Von Haeften, B.; Revisiting random deposition with surface relaxation: Approaches from growth rules to Edwards-Wilkinson equation; Iop Publishing; Journal Of Statistical Mechanics: Theory And Experiment; 12; 28; 12-2014; 1-16
1742-5468
url http://hdl.handle.net/11336/8255
identifier_str_mv Buceta, Ruben Carlos; Hansmann, David; Von Haeften, B.; Revisiting random deposition with surface relaxation: Approaches from growth rules to Edwards-Wilkinson equation; Iop Publishing; Journal Of Statistical Mechanics: Theory And Experiment; 12; 28; 12-2014; 1-16
1742-5468
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/1742-5468/2014/12/P12028/
info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/2014/12/P12028
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1409.7463v2
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Iop Publishing
publisher.none.fl_str_mv Iop Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614479600418816
score 13.070432