Revisiting random deposition with surface relaxation: Approaches from growth rules to Edwards-Wilkinson equation
- Autores
- Buceta, Ruben Carlos; Hansmann, David; Von Haeften, B.
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present several approaches for deriving the coarse-grained continuous Langevin equation (or Edwards-Wilkinson equation) from a random deposition with surface relaxation (RDSR) model. First we introduce a novel procedure to divide the first transition moment into the three fundamental processes involved: deposition, diffusion and volume conservation. We show how the diffusion process is related to antisymmetric contribution and the volume conservation process is related to symmetric contribution, which renormalizes to zero in the coarse-grained limit. In another approach, we find the coefficients of the continuous Langevin equation, by regularizing the discrete Langevin equation. Finally, in a third approach, we derive these coefficients from the set of test functions supported by the stationary probability density function (SPDF) of the discrete model. The applicability of the used approaches to other discrete random deposition models with instantaneous relaxation to a neighboring site is discussed.
Fil: Buceta, Ruben Carlos. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Hansmann, David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Von Haeften, B.. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina - Materia
-
random deposition with surface relaxation
RDSR
coarse-grained approaches
Langevin equations
continuous Langevin equation coefficients
generalized function theory - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/8255
Ver los metadatos del registro completo
id |
CONICETDig_2d64b5e4bef289df9ee6414afc11bfc7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/8255 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Revisiting random deposition with surface relaxation: Approaches from growth rules to Edwards-Wilkinson equationBuceta, Ruben CarlosHansmann, DavidVon Haeften, B.random deposition with surface relaxationRDSRcoarse-grained approachesLangevin equationscontinuous Langevin equation coefficientsgeneralized function theoryhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present several approaches for deriving the coarse-grained continuous Langevin equation (or Edwards-Wilkinson equation) from a random deposition with surface relaxation (RDSR) model. First we introduce a novel procedure to divide the first transition moment into the three fundamental processes involved: deposition, diffusion and volume conservation. We show how the diffusion process is related to antisymmetric contribution and the volume conservation process is related to symmetric contribution, which renormalizes to zero in the coarse-grained limit. In another approach, we find the coefficients of the continuous Langevin equation, by regularizing the discrete Langevin equation. Finally, in a third approach, we derive these coefficients from the set of test functions supported by the stationary probability density function (SPDF) of the discrete model. The applicability of the used approaches to other discrete random deposition models with instantaneous relaxation to a neighboring site is discussed.Fil: Buceta, Ruben Carlos. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Hansmann, David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Von Haeften, B.. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaIop Publishing2014-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/8255Buceta, Ruben Carlos; Hansmann, David; Von Haeften, B.; Revisiting random deposition with surface relaxation: Approaches from growth rules to Edwards-Wilkinson equation; Iop Publishing; Journal Of Statistical Mechanics: Theory And Experiment; 12; 28; 12-2014; 1-161742-5468enginfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/1742-5468/2014/12/P12028/info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/2014/12/P12028info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1409.7463v2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:44:14Zoai:ri.conicet.gov.ar:11336/8255instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:44:14.577CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Revisiting random deposition with surface relaxation: Approaches from growth rules to Edwards-Wilkinson equation |
title |
Revisiting random deposition with surface relaxation: Approaches from growth rules to Edwards-Wilkinson equation |
spellingShingle |
Revisiting random deposition with surface relaxation: Approaches from growth rules to Edwards-Wilkinson equation Buceta, Ruben Carlos random deposition with surface relaxation RDSR coarse-grained approaches Langevin equations continuous Langevin equation coefficients generalized function theory |
title_short |
Revisiting random deposition with surface relaxation: Approaches from growth rules to Edwards-Wilkinson equation |
title_full |
Revisiting random deposition with surface relaxation: Approaches from growth rules to Edwards-Wilkinson equation |
title_fullStr |
Revisiting random deposition with surface relaxation: Approaches from growth rules to Edwards-Wilkinson equation |
title_full_unstemmed |
Revisiting random deposition with surface relaxation: Approaches from growth rules to Edwards-Wilkinson equation |
title_sort |
Revisiting random deposition with surface relaxation: Approaches from growth rules to Edwards-Wilkinson equation |
dc.creator.none.fl_str_mv |
Buceta, Ruben Carlos Hansmann, David Von Haeften, B. |
author |
Buceta, Ruben Carlos |
author_facet |
Buceta, Ruben Carlos Hansmann, David Von Haeften, B. |
author_role |
author |
author2 |
Hansmann, David Von Haeften, B. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
random deposition with surface relaxation RDSR coarse-grained approaches Langevin equations continuous Langevin equation coefficients generalized function theory |
topic |
random deposition with surface relaxation RDSR coarse-grained approaches Langevin equations continuous Langevin equation coefficients generalized function theory |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present several approaches for deriving the coarse-grained continuous Langevin equation (or Edwards-Wilkinson equation) from a random deposition with surface relaxation (RDSR) model. First we introduce a novel procedure to divide the first transition moment into the three fundamental processes involved: deposition, diffusion and volume conservation. We show how the diffusion process is related to antisymmetric contribution and the volume conservation process is related to symmetric contribution, which renormalizes to zero in the coarse-grained limit. In another approach, we find the coefficients of the continuous Langevin equation, by regularizing the discrete Langevin equation. Finally, in a third approach, we derive these coefficients from the set of test functions supported by the stationary probability density function (SPDF) of the discrete model. The applicability of the used approaches to other discrete random deposition models with instantaneous relaxation to a neighboring site is discussed. Fil: Buceta, Ruben Carlos. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; Argentina Fil: Hansmann, David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; Argentina Fil: Von Haeften, B.. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina |
description |
We present several approaches for deriving the coarse-grained continuous Langevin equation (or Edwards-Wilkinson equation) from a random deposition with surface relaxation (RDSR) model. First we introduce a novel procedure to divide the first transition moment into the three fundamental processes involved: deposition, diffusion and volume conservation. We show how the diffusion process is related to antisymmetric contribution and the volume conservation process is related to symmetric contribution, which renormalizes to zero in the coarse-grained limit. In another approach, we find the coefficients of the continuous Langevin equation, by regularizing the discrete Langevin equation. Finally, in a third approach, we derive these coefficients from the set of test functions supported by the stationary probability density function (SPDF) of the discrete model. The applicability of the used approaches to other discrete random deposition models with instantaneous relaxation to a neighboring site is discussed. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/8255 Buceta, Ruben Carlos; Hansmann, David; Von Haeften, B.; Revisiting random deposition with surface relaxation: Approaches from growth rules to Edwards-Wilkinson equation; Iop Publishing; Journal Of Statistical Mechanics: Theory And Experiment; 12; 28; 12-2014; 1-16 1742-5468 |
url |
http://hdl.handle.net/11336/8255 |
identifier_str_mv |
Buceta, Ruben Carlos; Hansmann, David; Von Haeften, B.; Revisiting random deposition with surface relaxation: Approaches from growth rules to Edwards-Wilkinson equation; Iop Publishing; Journal Of Statistical Mechanics: Theory And Experiment; 12; 28; 12-2014; 1-16 1742-5468 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/1742-5468/2014/12/P12028/ info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/2014/12/P12028 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1409.7463v2 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Iop Publishing |
publisher.none.fl_str_mv |
Iop Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614479600418816 |
score |
13.070432 |