A regularization method based on level sets and augmented Lagrangian for parameter identification problems with piecewise constant solutions
- Autores
- Agnelli, Juan Pablo; de Cezaro, Adriano; Leitao Antonio
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We propose and analyse a regularization method for parameter identification problems modeled by ill-posed nonlinear operator equations, where the parameter to be identified is a piecewise constant function taking known values. Following (De Cezaro et al 2013 Inverse Problems 29 015003), a piecewise constant level set approach is used to represent the unknown parameter, and a corresponding Tikhonov functional is defined on an appropriated space of level set functions. Additionally, a suitable constraint is enforced, resulting that minimizers of our Tikhonov functional belong to the set of piecewise constant level set functions. In other words, the original parameter identification problem is rewritten in the form of a constrained optimization problem, which is solved using an augmented Lagrangian method. We prove the existence of zero duality gaps and the existence of generalized Lagrangian multipliers. Moreover, we extend the analysis in De Cezaro et al's work (2013 Inverse Problems 29 015003), proving convergence and stability of the proposed parameter identification method. A primal-dual algorithm is proposed to compute approximate solutions of the original inverse problem, and its convergence is proved. Numerical examples are presented: this algorithm is applied to a 2D diffuse optical tomography problem. The numerical results are compared with the ones in Agnelli et al (2017 ESAIM: COCV 23 663-83) demonstrating the effectiveness of this primal-dual algorithm.
Fil: Agnelli, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: de Cezaro, Adriano. Universidade Federal Rio Grande Do Sul; Brasil
Fil: Leitao Antonio. Universidade Federal de Santa Catarina; Brasil - Materia
-
AUGMENTED LAGRANGIAN METHOD
ILL-POSED PROBLEMS
LEVEL-SET APPROACH
REGULARIZATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/89275
Ver los metadatos del registro completo
id |
CONICETDig_e500a95503e083cb20727fae698f7936 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/89275 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A regularization method based on level sets and augmented Lagrangian for parameter identification problems with piecewise constant solutionsAgnelli, Juan Pablode Cezaro, AdrianoLeitao AntonioAUGMENTED LAGRANGIAN METHODILL-POSED PROBLEMSLEVEL-SET APPROACHREGULARIZATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We propose and analyse a regularization method for parameter identification problems modeled by ill-posed nonlinear operator equations, where the parameter to be identified is a piecewise constant function taking known values. Following (De Cezaro et al 2013 Inverse Problems 29 015003), a piecewise constant level set approach is used to represent the unknown parameter, and a corresponding Tikhonov functional is defined on an appropriated space of level set functions. Additionally, a suitable constraint is enforced, resulting that minimizers of our Tikhonov functional belong to the set of piecewise constant level set functions. In other words, the original parameter identification problem is rewritten in the form of a constrained optimization problem, which is solved using an augmented Lagrangian method. We prove the existence of zero duality gaps and the existence of generalized Lagrangian multipliers. Moreover, we extend the analysis in De Cezaro et al's work (2013 Inverse Problems 29 015003), proving convergence and stability of the proposed parameter identification method. A primal-dual algorithm is proposed to compute approximate solutions of the original inverse problem, and its convergence is proved. Numerical examples are presented: this algorithm is applied to a 2D diffuse optical tomography problem. The numerical results are compared with the ones in Agnelli et al (2017 ESAIM: COCV 23 663-83) demonstrating the effectiveness of this primal-dual algorithm.Fil: Agnelli, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: de Cezaro, Adriano. Universidade Federal Rio Grande Do Sul; BrasilFil: Leitao Antonio. Universidade Federal de Santa Catarina; BrasilIOP Publishing2018-10-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/89275Agnelli, Juan Pablo; de Cezaro, Adriano; Leitao Antonio; A regularization method based on level sets and augmented Lagrangian for parameter identification problems with piecewise constant solutions; IOP Publishing; Inverse Problems; 34; 12; 1-10-20180266-5611CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1361-6420/aae04dinfo:eu-repo/semantics/altIdentifier/doi/10.1088/1361-6420/aae04dinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:24:21Zoai:ri.conicet.gov.ar:11336/89275instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:24:21.985CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A regularization method based on level sets and augmented Lagrangian for parameter identification problems with piecewise constant solutions |
title |
A regularization method based on level sets and augmented Lagrangian for parameter identification problems with piecewise constant solutions |
spellingShingle |
A regularization method based on level sets and augmented Lagrangian for parameter identification problems with piecewise constant solutions Agnelli, Juan Pablo AUGMENTED LAGRANGIAN METHOD ILL-POSED PROBLEMS LEVEL-SET APPROACH REGULARIZATION |
title_short |
A regularization method based on level sets and augmented Lagrangian for parameter identification problems with piecewise constant solutions |
title_full |
A regularization method based on level sets and augmented Lagrangian for parameter identification problems with piecewise constant solutions |
title_fullStr |
A regularization method based on level sets and augmented Lagrangian for parameter identification problems with piecewise constant solutions |
title_full_unstemmed |
A regularization method based on level sets and augmented Lagrangian for parameter identification problems with piecewise constant solutions |
title_sort |
A regularization method based on level sets and augmented Lagrangian for parameter identification problems with piecewise constant solutions |
dc.creator.none.fl_str_mv |
Agnelli, Juan Pablo de Cezaro, Adriano Leitao Antonio |
author |
Agnelli, Juan Pablo |
author_facet |
Agnelli, Juan Pablo de Cezaro, Adriano Leitao Antonio |
author_role |
author |
author2 |
de Cezaro, Adriano Leitao Antonio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
AUGMENTED LAGRANGIAN METHOD ILL-POSED PROBLEMS LEVEL-SET APPROACH REGULARIZATION |
topic |
AUGMENTED LAGRANGIAN METHOD ILL-POSED PROBLEMS LEVEL-SET APPROACH REGULARIZATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We propose and analyse a regularization method for parameter identification problems modeled by ill-posed nonlinear operator equations, where the parameter to be identified is a piecewise constant function taking known values. Following (De Cezaro et al 2013 Inverse Problems 29 015003), a piecewise constant level set approach is used to represent the unknown parameter, and a corresponding Tikhonov functional is defined on an appropriated space of level set functions. Additionally, a suitable constraint is enforced, resulting that minimizers of our Tikhonov functional belong to the set of piecewise constant level set functions. In other words, the original parameter identification problem is rewritten in the form of a constrained optimization problem, which is solved using an augmented Lagrangian method. We prove the existence of zero duality gaps and the existence of generalized Lagrangian multipliers. Moreover, we extend the analysis in De Cezaro et al's work (2013 Inverse Problems 29 015003), proving convergence and stability of the proposed parameter identification method. A primal-dual algorithm is proposed to compute approximate solutions of the original inverse problem, and its convergence is proved. Numerical examples are presented: this algorithm is applied to a 2D diffuse optical tomography problem. The numerical results are compared with the ones in Agnelli et al (2017 ESAIM: COCV 23 663-83) demonstrating the effectiveness of this primal-dual algorithm. Fil: Agnelli, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: de Cezaro, Adriano. Universidade Federal Rio Grande Do Sul; Brasil Fil: Leitao Antonio. Universidade Federal de Santa Catarina; Brasil |
description |
We propose and analyse a regularization method for parameter identification problems modeled by ill-posed nonlinear operator equations, where the parameter to be identified is a piecewise constant function taking known values. Following (De Cezaro et al 2013 Inverse Problems 29 015003), a piecewise constant level set approach is used to represent the unknown parameter, and a corresponding Tikhonov functional is defined on an appropriated space of level set functions. Additionally, a suitable constraint is enforced, resulting that minimizers of our Tikhonov functional belong to the set of piecewise constant level set functions. In other words, the original parameter identification problem is rewritten in the form of a constrained optimization problem, which is solved using an augmented Lagrangian method. We prove the existence of zero duality gaps and the existence of generalized Lagrangian multipliers. Moreover, we extend the analysis in De Cezaro et al's work (2013 Inverse Problems 29 015003), proving convergence and stability of the proposed parameter identification method. A primal-dual algorithm is proposed to compute approximate solutions of the original inverse problem, and its convergence is proved. Numerical examples are presented: this algorithm is applied to a 2D diffuse optical tomography problem. The numerical results are compared with the ones in Agnelli et al (2017 ESAIM: COCV 23 663-83) demonstrating the effectiveness of this primal-dual algorithm. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-10-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/89275 Agnelli, Juan Pablo; de Cezaro, Adriano; Leitao Antonio; A regularization method based on level sets and augmented Lagrangian for parameter identification problems with piecewise constant solutions; IOP Publishing; Inverse Problems; 34; 12; 1-10-2018 0266-5611 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/89275 |
identifier_str_mv |
Agnelli, Juan Pablo; de Cezaro, Adriano; Leitao Antonio; A regularization method based on level sets and augmented Lagrangian for parameter identification problems with piecewise constant solutions; IOP Publishing; Inverse Problems; 34; 12; 1-10-2018 0266-5611 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/1361-6420/aae04d info:eu-repo/semantics/altIdentifier/doi/10.1088/1361-6420/aae04d |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614240241975296 |
score |
13.070432 |