On the identification of piecewise constant coefficients in optical diffusion tomography by level set
- Autores
- Agnelli, Juan Pablo; Cezaro, Adriano de; Leitão, Antonio; Alves, Maicon Marques
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Agnelli, Juan Pablo. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Fil: Agnelli, Juan Pablo. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.
Agnelli, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.
Fil: Cezaro, Adriano de. Federal University of Rio Grande. Institute of Mathematics Statistics and Physics; Brazil.
Fil: Leitão, Antonio. Federal University of Santa Catarina. Department of Mathematics; Brazil.
Fil: Alves, Maicon Marques. Federal University of Santa Catarina. Department of Mathematics; Brazil.
In this paper, we propose a level set regularization approach combined with a split strategy for the simultaneous identification of piecewise constant diffusion and absorption coefficients from a finite set of optical tomography data (Neumann-to-Dirichlet data). This problem is a high nonlinear inverse problem combining together the exponential and mildly ill-posedness of diffusion and absorption coefficients, respectively. We prove that the parameter-to-measurement map satisfies sufficient conditions (continuity in the L1 topology) to guarantee regularization properties of the proposed level set approach. On the other hand, numerical tests considering different configurations bring new ideas on how to propose a convergent split strategy for the simultaneous identification of the coefficients. The behavior and performance of the proposed numerical strategy is illustrated with some numerical examples.
info:eu-repo/semantics/publishedVersion
Fil: Agnelli, Juan Pablo. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Fil: Agnelli, Juan Pablo. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.
Agnelli, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.
Fil: Cezaro, Adriano de. Federal University of Rio Grande. Institute of Mathematics Statistics and Physics; Brazil.
Fil: Leitão, Antonio. Federal University of Santa Catarina. Department of Mathematics; Brazil.
Fil: Alves, Maicon Marques. Federal University of Santa Catarina. Department of Mathematics; Brazil.
Matemática Aplicada - Materia
-
Optical tomography
Parameter identification
Level set regularization
Numerical strategy - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- Repositorio
- Institución
- Universidad Nacional de Córdoba
- OAI Identificador
- oai:rdu.unc.edu.ar:11086/555032
Ver los metadatos del registro completo
id |
RDUUNC_300083872a13c58a5e5bb64d078b8493 |
---|---|
oai_identifier_str |
oai:rdu.unc.edu.ar:11086/555032 |
network_acronym_str |
RDUUNC |
repository_id_str |
2572 |
network_name_str |
Repositorio Digital Universitario (UNC) |
spelling |
On the identification of piecewise constant coefficients in optical diffusion tomography by level setAgnelli, Juan PabloCezaro, Adriano deLeitão, AntonioAlves, Maicon MarquesOptical tomographyParameter identificationLevel set regularizationNumerical strategyFil: Agnelli, Juan Pablo. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.Fil: Agnelli, Juan Pablo. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.Agnelli, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.Fil: Cezaro, Adriano de. Federal University of Rio Grande. Institute of Mathematics Statistics and Physics; Brazil.Fil: Leitão, Antonio. Federal University of Santa Catarina. Department of Mathematics; Brazil.Fil: Alves, Maicon Marques. Federal University of Santa Catarina. Department of Mathematics; Brazil.In this paper, we propose a level set regularization approach combined with a split strategy for the simultaneous identification of piecewise constant diffusion and absorption coefficients from a finite set of optical tomography data (Neumann-to-Dirichlet data). This problem is a high nonlinear inverse problem combining together the exponential and mildly ill-posedness of diffusion and absorption coefficients, respectively. We prove that the parameter-to-measurement map satisfies sufficient conditions (continuity in the L1 topology) to guarantee regularization properties of the proposed level set approach. On the other hand, numerical tests considering different configurations bring new ideas on how to propose a convergent split strategy for the simultaneous identification of the coefficients. The behavior and performance of the proposed numerical strategy is illustrated with some numerical examples.info:eu-repo/semantics/publishedVersionFil: Agnelli, Juan Pablo. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.Fil: Agnelli, Juan Pablo. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina.Agnelli, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.Fil: Cezaro, Adriano de. Federal University of Rio Grande. Institute of Mathematics Statistics and Physics; Brazil.Fil: Leitão, Antonio. Federal University of Santa Catarina. Department of Mathematics; Brazil.Fil: Alves, Maicon Marques. Federal University of Santa Catarina. Department of Mathematics; Brazil.Matemática Aplicadahttps://orcid.org/0000-0001-7982-6793https://orcid.org/0000-0001-8431-9120https://orcid.org/0000-0001-6785-8835https://orcid.org/0000-0001-5734-69592017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfAgnelli, J. P., Cezaro, A. de, Leitão, A. y Alves, M. M. (2017). On the identification of piecewise constant coefficients in optical diffusion tomography by level set. ESAIM: Control, Optimisation and Calculus of Variations, 23 (2), 663-683. https://doi.org/10.1051/cocv/20160071292-8119http://hdl.handle.net/11086/5550321262-3377https://doi.org/10.1051/cocv/2016007enginfo:eu-repo/semantics/openAccessreponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNC2025-09-04T12:31:16Zoai:rdu.unc.edu.ar:11086/555032Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-09-04 12:31:16.261Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse |
dc.title.none.fl_str_mv |
On the identification of piecewise constant coefficients in optical diffusion tomography by level set |
title |
On the identification of piecewise constant coefficients in optical diffusion tomography by level set |
spellingShingle |
On the identification of piecewise constant coefficients in optical diffusion tomography by level set Agnelli, Juan Pablo Optical tomography Parameter identification Level set regularization Numerical strategy |
title_short |
On the identification of piecewise constant coefficients in optical diffusion tomography by level set |
title_full |
On the identification of piecewise constant coefficients in optical diffusion tomography by level set |
title_fullStr |
On the identification of piecewise constant coefficients in optical diffusion tomography by level set |
title_full_unstemmed |
On the identification of piecewise constant coefficients in optical diffusion tomography by level set |
title_sort |
On the identification of piecewise constant coefficients in optical diffusion tomography by level set |
dc.creator.none.fl_str_mv |
Agnelli, Juan Pablo Cezaro, Adriano de Leitão, Antonio Alves, Maicon Marques |
author |
Agnelli, Juan Pablo |
author_facet |
Agnelli, Juan Pablo Cezaro, Adriano de Leitão, Antonio Alves, Maicon Marques |
author_role |
author |
author2 |
Cezaro, Adriano de Leitão, Antonio Alves, Maicon Marques |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
https://orcid.org/0000-0001-7982-6793 https://orcid.org/0000-0001-8431-9120 https://orcid.org/0000-0001-6785-8835 https://orcid.org/0000-0001-5734-6959 |
dc.subject.none.fl_str_mv |
Optical tomography Parameter identification Level set regularization Numerical strategy |
topic |
Optical tomography Parameter identification Level set regularization Numerical strategy |
dc.description.none.fl_txt_mv |
Fil: Agnelli, Juan Pablo. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. Fil: Agnelli, Juan Pablo. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Agnelli, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina. Fil: Cezaro, Adriano de. Federal University of Rio Grande. Institute of Mathematics Statistics and Physics; Brazil. Fil: Leitão, Antonio. Federal University of Santa Catarina. Department of Mathematics; Brazil. Fil: Alves, Maicon Marques. Federal University of Santa Catarina. Department of Mathematics; Brazil. In this paper, we propose a level set regularization approach combined with a split strategy for the simultaneous identification of piecewise constant diffusion and absorption coefficients from a finite set of optical tomography data (Neumann-to-Dirichlet data). This problem is a high nonlinear inverse problem combining together the exponential and mildly ill-posedness of diffusion and absorption coefficients, respectively. We prove that the parameter-to-measurement map satisfies sufficient conditions (continuity in the L1 topology) to guarantee regularization properties of the proposed level set approach. On the other hand, numerical tests considering different configurations bring new ideas on how to propose a convergent split strategy for the simultaneous identification of the coefficients. The behavior and performance of the proposed numerical strategy is illustrated with some numerical examples. info:eu-repo/semantics/publishedVersion Fil: Agnelli, Juan Pablo. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. Fil: Agnelli, Juan Pablo. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Agnelli, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina. Fil: Cezaro, Adriano de. Federal University of Rio Grande. Institute of Mathematics Statistics and Physics; Brazil. Fil: Leitão, Antonio. Federal University of Santa Catarina. Department of Mathematics; Brazil. Fil: Alves, Maicon Marques. Federal University of Santa Catarina. Department of Mathematics; Brazil. Matemática Aplicada |
description |
Fil: Agnelli, Juan Pablo. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
status_str |
publishedVersion |
format |
article |
dc.identifier.none.fl_str_mv |
Agnelli, J. P., Cezaro, A. de, Leitão, A. y Alves, M. M. (2017). On the identification of piecewise constant coefficients in optical diffusion tomography by level set. ESAIM: Control, Optimisation and Calculus of Variations, 23 (2), 663-683. https://doi.org/10.1051/cocv/2016007 1292-8119 http://hdl.handle.net/11086/555032 1262-3377 https://doi.org/10.1051/cocv/2016007 |
identifier_str_mv |
Agnelli, J. P., Cezaro, A. de, Leitão, A. y Alves, M. M. (2017). On the identification of piecewise constant coefficients in optical diffusion tomography by level set. ESAIM: Control, Optimisation and Calculus of Variations, 23 (2), 663-683. https://doi.org/10.1051/cocv/2016007 1292-8119 1262-3377 |
url |
http://hdl.handle.net/11086/555032 https://doi.org/10.1051/cocv/2016007 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositorio Digital Universitario (UNC) instname:Universidad Nacional de Córdoba instacron:UNC |
reponame_str |
Repositorio Digital Universitario (UNC) |
collection |
Repositorio Digital Universitario (UNC) |
instname_str |
Universidad Nacional de Córdoba |
instacron_str |
UNC |
institution |
UNC |
repository.name.fl_str_mv |
Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba |
repository.mail.fl_str_mv |
oca.unc@gmail.com |
_version_ |
1842349606986317824 |
score |
13.13397 |