Selecting and Weighting Users in Collaborative Filtering-based POI Recommendation
- Autores
- Rios, Carlos; Schiaffino, Silvia Noemi; Godoy, Daniela Lis
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Location-based recommender systems (LBRSs) provide a technological solution for helping users to cope with the vast amount of information coming from geo-localization services. Most online social networks capture the geographic location of users and their points-of-interests (POIs). Location-based social networks (LBSNs), like Foursquare, leverage technologies such as GPS, Web 2.0 and smartphones allow users to share their locations (check-ins), search for POIs, look for discounts, comment about specific places, connect with friends and find the ones who are near a specific location. LBRSs play an important role in social networks nowadays as they generate suggestions based on techniques such as collaborative filtering (CF). In this traditional recommendation approach, prediction about a user preferences are based on the opinions of like-minded people. Users that can provide valuable information for prediction need to be first selected from the complete network and, then, their opinions weighted according to their expected contribution. In this paper, we propose and analyze a number of strategies for selecting neighbors within the CF framework leveraging on information contained in the users' social network, common visits, visiting area and POIs categories as influential factors. Experimental evaluation with data from Foursquare social network shed some light on the impact of different mechanisms on user weighting for prediction.
Fil: Rios, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Schiaffino, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina - Materia
-
LOCATION-BASED SOCIAL NETWORKS
RECOMMENDER SYSTEMS
COLLABORATIVE FILTERING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/59727
Ver los metadatos del registro completo
id |
CONICETDig_69a3246774d38f22690e060d8e58b3ec |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/59727 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Selecting and Weighting Users in Collaborative Filtering-based POI RecommendationRios, CarlosSchiaffino, Silvia NoemiGodoy, Daniela LisLOCATION-BASED SOCIAL NETWORKSRECOMMENDER SYSTEMSCOLLABORATIVE FILTERINGhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Location-based recommender systems (LBRSs) provide a technological solution for helping users to cope with the vast amount of information coming from geo-localization services. Most online social networks capture the geographic location of users and their points-of-interests (POIs). Location-based social networks (LBSNs), like Foursquare, leverage technologies such as GPS, Web 2.0 and smartphones allow users to share their locations (check-ins), search for POIs, look for discounts, comment about specific places, connect with friends and find the ones who are near a specific location. LBRSs play an important role in social networks nowadays as they generate suggestions based on techniques such as collaborative filtering (CF). In this traditional recommendation approach, prediction about a user preferences are based on the opinions of like-minded people. Users that can provide valuable information for prediction need to be first selected from the complete network and, then, their opinions weighted according to their expected contribution. In this paper, we propose and analyze a number of strategies for selecting neighbors within the CF framework leveraging on information contained in the users' social network, common visits, visiting area and POIs categories as influential factors. Experimental evaluation with data from Foursquare social network shed some light on the impact of different mechanisms on user weighting for prediction.Fil: Rios, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Schiaffino, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaBudapest Tech2017-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59727Rios, Carlos; Schiaffino, Silvia Noemi; Godoy, Daniela Lis; Selecting and Weighting Users in Collaborative Filtering-based POI Recommendation; Budapest Tech; Acta Polytechnica Hungarica; 14; 3; 2-2017; 13-321785-8860CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.uni-obuda.hu/journal/Rios_Schiaffino_Godoy_74.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:19:32Zoai:ri.conicet.gov.ar:11336/59727instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:19:32.543CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Selecting and Weighting Users in Collaborative Filtering-based POI Recommendation |
title |
Selecting and Weighting Users in Collaborative Filtering-based POI Recommendation |
spellingShingle |
Selecting and Weighting Users in Collaborative Filtering-based POI Recommendation Rios, Carlos LOCATION-BASED SOCIAL NETWORKS RECOMMENDER SYSTEMS COLLABORATIVE FILTERING |
title_short |
Selecting and Weighting Users in Collaborative Filtering-based POI Recommendation |
title_full |
Selecting and Weighting Users in Collaborative Filtering-based POI Recommendation |
title_fullStr |
Selecting and Weighting Users in Collaborative Filtering-based POI Recommendation |
title_full_unstemmed |
Selecting and Weighting Users in Collaborative Filtering-based POI Recommendation |
title_sort |
Selecting and Weighting Users in Collaborative Filtering-based POI Recommendation |
dc.creator.none.fl_str_mv |
Rios, Carlos Schiaffino, Silvia Noemi Godoy, Daniela Lis |
author |
Rios, Carlos |
author_facet |
Rios, Carlos Schiaffino, Silvia Noemi Godoy, Daniela Lis |
author_role |
author |
author2 |
Schiaffino, Silvia Noemi Godoy, Daniela Lis |
author2_role |
author author |
dc.subject.none.fl_str_mv |
LOCATION-BASED SOCIAL NETWORKS RECOMMENDER SYSTEMS COLLABORATIVE FILTERING |
topic |
LOCATION-BASED SOCIAL NETWORKS RECOMMENDER SYSTEMS COLLABORATIVE FILTERING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Location-based recommender systems (LBRSs) provide a technological solution for helping users to cope with the vast amount of information coming from geo-localization services. Most online social networks capture the geographic location of users and their points-of-interests (POIs). Location-based social networks (LBSNs), like Foursquare, leverage technologies such as GPS, Web 2.0 and smartphones allow users to share their locations (check-ins), search for POIs, look for discounts, comment about specific places, connect with friends and find the ones who are near a specific location. LBRSs play an important role in social networks nowadays as they generate suggestions based on techniques such as collaborative filtering (CF). In this traditional recommendation approach, prediction about a user preferences are based on the opinions of like-minded people. Users that can provide valuable information for prediction need to be first selected from the complete network and, then, their opinions weighted according to their expected contribution. In this paper, we propose and analyze a number of strategies for selecting neighbors within the CF framework leveraging on information contained in the users' social network, common visits, visiting area and POIs categories as influential factors. Experimental evaluation with data from Foursquare social network shed some light on the impact of different mechanisms on user weighting for prediction. Fil: Rios, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Schiaffino, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina |
description |
Location-based recommender systems (LBRSs) provide a technological solution for helping users to cope with the vast amount of information coming from geo-localization services. Most online social networks capture the geographic location of users and their points-of-interests (POIs). Location-based social networks (LBSNs), like Foursquare, leverage technologies such as GPS, Web 2.0 and smartphones allow users to share their locations (check-ins), search for POIs, look for discounts, comment about specific places, connect with friends and find the ones who are near a specific location. LBRSs play an important role in social networks nowadays as they generate suggestions based on techniques such as collaborative filtering (CF). In this traditional recommendation approach, prediction about a user preferences are based on the opinions of like-minded people. Users that can provide valuable information for prediction need to be first selected from the complete network and, then, their opinions weighted according to their expected contribution. In this paper, we propose and analyze a number of strategies for selecting neighbors within the CF framework leveraging on information contained in the users' social network, common visits, visiting area and POIs categories as influential factors. Experimental evaluation with data from Foursquare social network shed some light on the impact of different mechanisms on user weighting for prediction. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/59727 Rios, Carlos; Schiaffino, Silvia Noemi; Godoy, Daniela Lis; Selecting and Weighting Users in Collaborative Filtering-based POI Recommendation; Budapest Tech; Acta Polytechnica Hungarica; 14; 3; 2-2017; 13-32 1785-8860 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/59727 |
identifier_str_mv |
Rios, Carlos; Schiaffino, Silvia Noemi; Godoy, Daniela Lis; Selecting and Weighting Users in Collaborative Filtering-based POI Recommendation; Budapest Tech; Acta Polytechnica Hungarica; 14; 3; 2-2017; 13-32 1785-8860 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.uni-obuda.hu/journal/Rios_Schiaffino_Godoy_74.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Budapest Tech |
publisher.none.fl_str_mv |
Budapest Tech |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614167564124160 |
score |
13.070432 |