Bispectrum-based features classification for myoelectric control
- Autores
- Orosco, Eugenio Conrado; López Celani, Natalia Martina; Di Sciascio, Fernando Agustín
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Surface electromyographic signals provide useful information about motion intentionality. Therefore, they are a suitable reference signal for control purposes. A continuous classification scheme of five upper limb movements applied to a myoelectric control of a robotic arm is presented. This classification is based on features extracted from the bispectrum of four EMG signal channels. Among several bispectrum estimators, this paper is focused on arithmetic mean, median, and trimmed mean estimators, and their ensemble average versions. All bispectrum estimators have been evaluated in terms of accuracy, robustness against outliers, and computational time. The median bispectrum estimator shows low variance and high robustness properties. Two feature reduction methods for the complex bispectrum matrix are proposed. The first one estimates the three classic means (arithmetic, harmonic, and geometric means) from the module of the bispectrum matrix, and the second one estimates the same three means from the square of the real part of the bispectrum matrix. A two-layer feedforward network for movement's classification and a dedicated system to achieve the myoelectric control of a robotic arm were used. It was found that the classification performance in real-time is similar to those obtained off-line by other authors, and that all volunteers in the practical application successfully completed the control task.
Fil: Orosco, Eugenio Conrado. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: López Celani, Natalia Martina. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Di Sciascio, Fernando Agustín. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Emg
Robust Bispectrum
Continuous Classification
Myoelectric Control - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/23954
Ver los metadatos del registro completo
id |
CONICETDig_e42f23004f06000fe13c3fff415a43a3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/23954 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Bispectrum-based features classification for myoelectric controlOrosco, Eugenio ConradoLópez Celani, Natalia MartinaDi Sciascio, Fernando AgustínEmgRobust BispectrumContinuous ClassificationMyoelectric Controlhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Surface electromyographic signals provide useful information about motion intentionality. Therefore, they are a suitable reference signal for control purposes. A continuous classification scheme of five upper limb movements applied to a myoelectric control of a robotic arm is presented. This classification is based on features extracted from the bispectrum of four EMG signal channels. Among several bispectrum estimators, this paper is focused on arithmetic mean, median, and trimmed mean estimators, and their ensemble average versions. All bispectrum estimators have been evaluated in terms of accuracy, robustness against outliers, and computational time. The median bispectrum estimator shows low variance and high robustness properties. Two feature reduction methods for the complex bispectrum matrix are proposed. The first one estimates the three classic means (arithmetic, harmonic, and geometric means) from the module of the bispectrum matrix, and the second one estimates the same three means from the square of the real part of the bispectrum matrix. A two-layer feedforward network for movement's classification and a dedicated system to achieve the myoelectric control of a robotic arm were used. It was found that the classification performance in real-time is similar to those obtained off-line by other authors, and that all volunteers in the practical application successfully completed the control task.Fil: Orosco, Eugenio Conrado. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: López Celani, Natalia Martina. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Di Sciascio, Fernando Agustín. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2013-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/23954Orosco, Eugenio Conrado; López Celani, Natalia Martina; Di Sciascio, Fernando Agustín; Bispectrum-based features classification for myoelectric control; Elsevier; Biomedical Signal Processing and Control; 8; 3; 3-2013; 153-1681746-8094CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1746809412000900info:eu-repo/semantics/altIdentifier/doi/10.1016/j.bspc.2012.08.008info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:11:07Zoai:ri.conicet.gov.ar:11336/23954instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:11:08.166CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Bispectrum-based features classification for myoelectric control |
title |
Bispectrum-based features classification for myoelectric control |
spellingShingle |
Bispectrum-based features classification for myoelectric control Orosco, Eugenio Conrado Emg Robust Bispectrum Continuous Classification Myoelectric Control |
title_short |
Bispectrum-based features classification for myoelectric control |
title_full |
Bispectrum-based features classification for myoelectric control |
title_fullStr |
Bispectrum-based features classification for myoelectric control |
title_full_unstemmed |
Bispectrum-based features classification for myoelectric control |
title_sort |
Bispectrum-based features classification for myoelectric control |
dc.creator.none.fl_str_mv |
Orosco, Eugenio Conrado López Celani, Natalia Martina Di Sciascio, Fernando Agustín |
author |
Orosco, Eugenio Conrado |
author_facet |
Orosco, Eugenio Conrado López Celani, Natalia Martina Di Sciascio, Fernando Agustín |
author_role |
author |
author2 |
López Celani, Natalia Martina Di Sciascio, Fernando Agustín |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Emg Robust Bispectrum Continuous Classification Myoelectric Control |
topic |
Emg Robust Bispectrum Continuous Classification Myoelectric Control |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Surface electromyographic signals provide useful information about motion intentionality. Therefore, they are a suitable reference signal for control purposes. A continuous classification scheme of five upper limb movements applied to a myoelectric control of a robotic arm is presented. This classification is based on features extracted from the bispectrum of four EMG signal channels. Among several bispectrum estimators, this paper is focused on arithmetic mean, median, and trimmed mean estimators, and their ensemble average versions. All bispectrum estimators have been evaluated in terms of accuracy, robustness against outliers, and computational time. The median bispectrum estimator shows low variance and high robustness properties. Two feature reduction methods for the complex bispectrum matrix are proposed. The first one estimates the three classic means (arithmetic, harmonic, and geometric means) from the module of the bispectrum matrix, and the second one estimates the same three means from the square of the real part of the bispectrum matrix. A two-layer feedforward network for movement's classification and a dedicated system to achieve the myoelectric control of a robotic arm were used. It was found that the classification performance in real-time is similar to those obtained off-line by other authors, and that all volunteers in the practical application successfully completed the control task. Fil: Orosco, Eugenio Conrado. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: López Celani, Natalia Martina. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Di Sciascio, Fernando Agustín. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Surface electromyographic signals provide useful information about motion intentionality. Therefore, they are a suitable reference signal for control purposes. A continuous classification scheme of five upper limb movements applied to a myoelectric control of a robotic arm is presented. This classification is based on features extracted from the bispectrum of four EMG signal channels. Among several bispectrum estimators, this paper is focused on arithmetic mean, median, and trimmed mean estimators, and their ensemble average versions. All bispectrum estimators have been evaluated in terms of accuracy, robustness against outliers, and computational time. The median bispectrum estimator shows low variance and high robustness properties. Two feature reduction methods for the complex bispectrum matrix are proposed. The first one estimates the three classic means (arithmetic, harmonic, and geometric means) from the module of the bispectrum matrix, and the second one estimates the same three means from the square of the real part of the bispectrum matrix. A two-layer feedforward network for movement's classification and a dedicated system to achieve the myoelectric control of a robotic arm were used. It was found that the classification performance in real-time is similar to those obtained off-line by other authors, and that all volunteers in the practical application successfully completed the control task. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/23954 Orosco, Eugenio Conrado; López Celani, Natalia Martina; Di Sciascio, Fernando Agustín; Bispectrum-based features classification for myoelectric control; Elsevier; Biomedical Signal Processing and Control; 8; 3; 3-2013; 153-168 1746-8094 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/23954 |
identifier_str_mv |
Orosco, Eugenio Conrado; López Celani, Natalia Martina; Di Sciascio, Fernando Agustín; Bispectrum-based features classification for myoelectric control; Elsevier; Biomedical Signal Processing and Control; 8; 3; 3-2013; 153-168 1746-8094 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1746809412000900 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.bspc.2012.08.008 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980567369383936 |
score |
12.993085 |