Muscular synergy classification and myoelectric control using high-order cross-cumulants
- Autores
- Orosco, Eugenio Conrado; Di Sciascio, Fernando Agustín
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- High-order statistics (HOS) are well suited for describing non-Gaussian random processes. These techniques are increasingly being employed in myoelectric research, on both time and frequency domain techniques. This work presents HOS-based techniques using only HOS time domain features to classify myoelectric signals. The auto-, cross- and full- (joint) third-order cumulants are evaluated as EMG-signal feature vectors to be compared between them. Four surface EMG signals were processed for classify motions from the upper limbs. Synergy among channels is characterized by the features in both auto and cross modes, and their incidences for classifying five or six movements are analyzed. In contrast to the third-order auto-cumulants, it had been verified that the third-order cross-cumulants have the same classification rate by working with five or six movements. A myoelectric control scheme and its experimental application were executed with normal and disabled subjects, reaching a classification rates of 90%, in average. Accuracy in online experiments was similar to the off-line classification rate.
Fil: Orosco, Eugenio Conrado. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Di Sciascio, Fernando Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina - Materia
-
Cross-Cumulants
Hos
Muscular Synergy
Myoelectric Control
Semg - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/63543
Ver los metadatos del registro completo
id |
CONICETDig_d229ce56c45e992b30c2855407199b91 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/63543 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Muscular synergy classification and myoelectric control using high-order cross-cumulantsOrosco, Eugenio ConradoDi Sciascio, Fernando AgustínCross-CumulantsHosMuscular SynergyMyoelectric ControlSemghttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2High-order statistics (HOS) are well suited for describing non-Gaussian random processes. These techniques are increasingly being employed in myoelectric research, on both time and frequency domain techniques. This work presents HOS-based techniques using only HOS time domain features to classify myoelectric signals. The auto-, cross- and full- (joint) third-order cumulants are evaluated as EMG-signal feature vectors to be compared between them. Four surface EMG signals were processed for classify motions from the upper limbs. Synergy among channels is characterized by the features in both auto and cross modes, and their incidences for classifying five or six movements are analyzed. In contrast to the third-order auto-cumulants, it had been verified that the third-order cross-cumulants have the same classification rate by working with five or six movements. A myoelectric control scheme and its experimental application were executed with normal and disabled subjects, reaching a classification rates of 90%, in average. Accuracy in online experiments was similar to the off-line classification rate.Fil: Orosco, Eugenio Conrado. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Di Sciascio, Fernando Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaSpringer2017-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/63543Orosco, Eugenio Conrado; Di Sciascio, Fernando Agustín; Muscular synergy classification and myoelectric control using high-order cross-cumulants; Springer; Neural Computing And Applications; 28; 10; 10-2017; 2979-29930941-06431433-3058CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00521-017-2927-6info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00521-017-2927-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:22:25Zoai:ri.conicet.gov.ar:11336/63543instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:22:26.055CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Muscular synergy classification and myoelectric control using high-order cross-cumulants |
title |
Muscular synergy classification and myoelectric control using high-order cross-cumulants |
spellingShingle |
Muscular synergy classification and myoelectric control using high-order cross-cumulants Orosco, Eugenio Conrado Cross-Cumulants Hos Muscular Synergy Myoelectric Control Semg |
title_short |
Muscular synergy classification and myoelectric control using high-order cross-cumulants |
title_full |
Muscular synergy classification and myoelectric control using high-order cross-cumulants |
title_fullStr |
Muscular synergy classification and myoelectric control using high-order cross-cumulants |
title_full_unstemmed |
Muscular synergy classification and myoelectric control using high-order cross-cumulants |
title_sort |
Muscular synergy classification and myoelectric control using high-order cross-cumulants |
dc.creator.none.fl_str_mv |
Orosco, Eugenio Conrado Di Sciascio, Fernando Agustín |
author |
Orosco, Eugenio Conrado |
author_facet |
Orosco, Eugenio Conrado Di Sciascio, Fernando Agustín |
author_role |
author |
author2 |
Di Sciascio, Fernando Agustín |
author2_role |
author |
dc.subject.none.fl_str_mv |
Cross-Cumulants Hos Muscular Synergy Myoelectric Control Semg |
topic |
Cross-Cumulants Hos Muscular Synergy Myoelectric Control Semg |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
High-order statistics (HOS) are well suited for describing non-Gaussian random processes. These techniques are increasingly being employed in myoelectric research, on both time and frequency domain techniques. This work presents HOS-based techniques using only HOS time domain features to classify myoelectric signals. The auto-, cross- and full- (joint) third-order cumulants are evaluated as EMG-signal feature vectors to be compared between them. Four surface EMG signals were processed for classify motions from the upper limbs. Synergy among channels is characterized by the features in both auto and cross modes, and their incidences for classifying five or six movements are analyzed. In contrast to the third-order auto-cumulants, it had been verified that the third-order cross-cumulants have the same classification rate by working with five or six movements. A myoelectric control scheme and its experimental application were executed with normal and disabled subjects, reaching a classification rates of 90%, in average. Accuracy in online experiments was similar to the off-line classification rate. Fil: Orosco, Eugenio Conrado. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina Fil: Di Sciascio, Fernando Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina |
description |
High-order statistics (HOS) are well suited for describing non-Gaussian random processes. These techniques are increasingly being employed in myoelectric research, on both time and frequency domain techniques. This work presents HOS-based techniques using only HOS time domain features to classify myoelectric signals. The auto-, cross- and full- (joint) third-order cumulants are evaluated as EMG-signal feature vectors to be compared between them. Four surface EMG signals were processed for classify motions from the upper limbs. Synergy among channels is characterized by the features in both auto and cross modes, and their incidences for classifying five or six movements are analyzed. In contrast to the third-order auto-cumulants, it had been verified that the third-order cross-cumulants have the same classification rate by working with five or six movements. A myoelectric control scheme and its experimental application were executed with normal and disabled subjects, reaching a classification rates of 90%, in average. Accuracy in online experiments was similar to the off-line classification rate. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/63543 Orosco, Eugenio Conrado; Di Sciascio, Fernando Agustín; Muscular synergy classification and myoelectric control using high-order cross-cumulants; Springer; Neural Computing And Applications; 28; 10; 10-2017; 2979-2993 0941-0643 1433-3058 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/63543 |
identifier_str_mv |
Orosco, Eugenio Conrado; Di Sciascio, Fernando Agustín; Muscular synergy classification and myoelectric control using high-order cross-cumulants; Springer; Neural Computing And Applications; 28; 10; 10-2017; 2979-2993 0941-0643 1433-3058 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00521-017-2927-6 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00521-017-2927-6 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082623507529728 |
score |
13.22299 |