On the use of high-order cumulant and bispectrum formuscular-activity detection
- Autores
- Orosco, Eugenio Conrado; Diez, Pablo Federico; Laciar Leber, Eric; Mut, Vicente Antonio; Soria, Carlos Miguel; Di Sciascio, Fernando Agustin
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The electromyographic (EMG) signals are extensively used on feature extraction methods for movement classification purposes. High-Order Statistics (HOS) is being employed increasingly in myoelectric research. HOS techniques could be represented in the frequency domain (high-order spectra, e.g., bispectrum, trispectrum) or in the time domain (higher-order cumulants). More calculus is required for computing the HOS in the frequency domain. On the one hand, classical bispectrum based features were applied to EMG signals. On the other hand, we propose novel third-order cumulant-based features for EMG signals. Two different classifiers are implemented for muscular activity detection. Different analysis and evaluations were applied to both HOS-based features in order to qualify and quantify similarities. Based on these results, it is possible to conclude that cumulant based features and bispectrum-based features had comparable behavior and allowed similar classification rates. Hence, extra calculus in order to convert time- to frequency-domain should be avoided.
Fil: Orosco, Eugenio Conrado. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Instituto de Automática; Argentina
Fil: Diez, Pablo Federico. Universidad Nacional de San Juan. Facultad de Ingenieria. Departamento de Electronica y Automatica. Gabinete de Tecnologia Medica; Argentina
Fil: Laciar Leber, Eric. Universidad Nacional de San Juan. Facultad de Ingenieria. Departamento de Electronica y Automatica. Gabinete de Tecnologia Medica; Argentina
Fil: Mut, Vicente Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Instituto de Automática; Argentina
Fil: Soria, Carlos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Instituto de Automática; Argentina
Fil: Di Sciascio, Fernando Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Instituto de Automática; Argentina - Materia
-
Emg
Higher-Order Statistics
Cumulants
Bispectrum - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/4900
Ver los metadatos del registro completo
id |
CONICETDig_9b88bfe79402cb6f99d82425cbcf89f6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/4900 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the use of high-order cumulant and bispectrum formuscular-activity detectionOrosco, Eugenio ConradoDiez, Pablo FedericoLaciar Leber, EricMut, Vicente AntonioSoria, Carlos MiguelDi Sciascio, Fernando AgustinEmgHigher-Order StatisticsCumulantsBispectrumhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2The electromyographic (EMG) signals are extensively used on feature extraction methods for movement classification purposes. High-Order Statistics (HOS) is being employed increasingly in myoelectric research. HOS techniques could be represented in the frequency domain (high-order spectra, e.g., bispectrum, trispectrum) or in the time domain (higher-order cumulants). More calculus is required for computing the HOS in the frequency domain. On the one hand, classical bispectrum based features were applied to EMG signals. On the other hand, we propose novel third-order cumulant-based features for EMG signals. Two different classifiers are implemented for muscular activity detection. Different analysis and evaluations were applied to both HOS-based features in order to qualify and quantify similarities. Based on these results, it is possible to conclude that cumulant based features and bispectrum-based features had comparable behavior and allowed similar classification rates. Hence, extra calculus in order to convert time- to frequency-domain should be avoided.Fil: Orosco, Eugenio Conrado. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Instituto de Automática; ArgentinaFil: Diez, Pablo Federico. Universidad Nacional de San Juan. Facultad de Ingenieria. Departamento de Electronica y Automatica. Gabinete de Tecnologia Medica; ArgentinaFil: Laciar Leber, Eric. Universidad Nacional de San Juan. Facultad de Ingenieria. Departamento de Electronica y Automatica. Gabinete de Tecnologia Medica; ArgentinaFil: Mut, Vicente Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Instituto de Automática; ArgentinaFil: Soria, Carlos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Instituto de Automática; ArgentinaFil: Di Sciascio, Fernando Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Instituto de Automática; ArgentinaElsevier2015-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/4900Orosco, Eugenio Conrado; Diez, Pablo Federico; Laciar Leber, Eric; Mut, Vicente Antonio; Soria, Carlos Miguel; et al.; On the use of high-order cumulant and bispectrum formuscular-activity detection; Elsevier; Biomedical Signal Processing And Control; 18; 4-2015; 325-3331746-8094enginfo:eu-repo/semantics/altIdentifier/url/10.1016/j.bspc.2015.02.011info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1746809415000233info:eu-repo/semantics/altIdentifier/doi/10.1016/j.bspc.2015.02.011info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:27:05Zoai:ri.conicet.gov.ar:11336/4900instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:27:05.606CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the use of high-order cumulant and bispectrum formuscular-activity detection |
title |
On the use of high-order cumulant and bispectrum formuscular-activity detection |
spellingShingle |
On the use of high-order cumulant and bispectrum formuscular-activity detection Orosco, Eugenio Conrado Emg Higher-Order Statistics Cumulants Bispectrum |
title_short |
On the use of high-order cumulant and bispectrum formuscular-activity detection |
title_full |
On the use of high-order cumulant and bispectrum formuscular-activity detection |
title_fullStr |
On the use of high-order cumulant and bispectrum formuscular-activity detection |
title_full_unstemmed |
On the use of high-order cumulant and bispectrum formuscular-activity detection |
title_sort |
On the use of high-order cumulant and bispectrum formuscular-activity detection |
dc.creator.none.fl_str_mv |
Orosco, Eugenio Conrado Diez, Pablo Federico Laciar Leber, Eric Mut, Vicente Antonio Soria, Carlos Miguel Di Sciascio, Fernando Agustin |
author |
Orosco, Eugenio Conrado |
author_facet |
Orosco, Eugenio Conrado Diez, Pablo Federico Laciar Leber, Eric Mut, Vicente Antonio Soria, Carlos Miguel Di Sciascio, Fernando Agustin |
author_role |
author |
author2 |
Diez, Pablo Federico Laciar Leber, Eric Mut, Vicente Antonio Soria, Carlos Miguel Di Sciascio, Fernando Agustin |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Emg Higher-Order Statistics Cumulants Bispectrum |
topic |
Emg Higher-Order Statistics Cumulants Bispectrum |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The electromyographic (EMG) signals are extensively used on feature extraction methods for movement classification purposes. High-Order Statistics (HOS) is being employed increasingly in myoelectric research. HOS techniques could be represented in the frequency domain (high-order spectra, e.g., bispectrum, trispectrum) or in the time domain (higher-order cumulants). More calculus is required for computing the HOS in the frequency domain. On the one hand, classical bispectrum based features were applied to EMG signals. On the other hand, we propose novel third-order cumulant-based features for EMG signals. Two different classifiers are implemented for muscular activity detection. Different analysis and evaluations were applied to both HOS-based features in order to qualify and quantify similarities. Based on these results, it is possible to conclude that cumulant based features and bispectrum-based features had comparable behavior and allowed similar classification rates. Hence, extra calculus in order to convert time- to frequency-domain should be avoided. Fil: Orosco, Eugenio Conrado. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Instituto de Automática; Argentina Fil: Diez, Pablo Federico. Universidad Nacional de San Juan. Facultad de Ingenieria. Departamento de Electronica y Automatica. Gabinete de Tecnologia Medica; Argentina Fil: Laciar Leber, Eric. Universidad Nacional de San Juan. Facultad de Ingenieria. Departamento de Electronica y Automatica. Gabinete de Tecnologia Medica; Argentina Fil: Mut, Vicente Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Instituto de Automática; Argentina Fil: Soria, Carlos Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Instituto de Automática; Argentina Fil: Di Sciascio, Fernando Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Juan. Instituto de Automática; Argentina |
description |
The electromyographic (EMG) signals are extensively used on feature extraction methods for movement classification purposes. High-Order Statistics (HOS) is being employed increasingly in myoelectric research. HOS techniques could be represented in the frequency domain (high-order spectra, e.g., bispectrum, trispectrum) or in the time domain (higher-order cumulants). More calculus is required for computing the HOS in the frequency domain. On the one hand, classical bispectrum based features were applied to EMG signals. On the other hand, we propose novel third-order cumulant-based features for EMG signals. Two different classifiers are implemented for muscular activity detection. Different analysis and evaluations were applied to both HOS-based features in order to qualify and quantify similarities. Based on these results, it is possible to conclude that cumulant based features and bispectrum-based features had comparable behavior and allowed similar classification rates. Hence, extra calculus in order to convert time- to frequency-domain should be avoided. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/4900 Orosco, Eugenio Conrado; Diez, Pablo Federico; Laciar Leber, Eric; Mut, Vicente Antonio; Soria, Carlos Miguel; et al.; On the use of high-order cumulant and bispectrum formuscular-activity detection; Elsevier; Biomedical Signal Processing And Control; 18; 4-2015; 325-333 1746-8094 |
url |
http://hdl.handle.net/11336/4900 |
identifier_str_mv |
Orosco, Eugenio Conrado; Diez, Pablo Federico; Laciar Leber, Eric; Mut, Vicente Antonio; Soria, Carlos Miguel; et al.; On the use of high-order cumulant and bispectrum formuscular-activity detection; Elsevier; Biomedical Signal Processing And Control; 18; 4-2015; 325-333 1746-8094 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/10.1016/j.bspc.2015.02.011 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1746809415000233 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.bspc.2015.02.011 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083413178580992 |
score |
13.22299 |