Detecting stationary gain changes in large process systems
- Autores
- Bustos, Germán Andrés; González, Alejandro Hernán; Marchetti, Jacinto Luis
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Stationary process gains are critical model parameters to determine targets in commercial MPC technologies. Consequently, important savings can be reached by acceding to an early prevention method capable of detecting whether the actual process moves away from the modeled dynamics or not, particularly by indicating when the process gains are not more represented by those included in the model identified during commissioning stages. In this first approach, a subspace identification method is used under open loop process condition to develop a process gain-matrix estimator. The main reason for using the subspace identification method is that it works directly with raw data and that the development is intended for monitoring future applications under multivariable closed-loop optimizing control where the transient regime is a frequent scenario. The objective of this paper is to present a method capable of detecting those gains of a multivariable model that start moving away from the original values. The anticipated knowledge of these events could provide a warning to process engineers and prevent from targeting process conditions with wrong gain estimations. The regular follow-up of the gain matrix should also help to localize those dynamics needing an updating identification.
Fil: Bustos, Germán Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina
Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina
Fil: Marchetti, Jacinto Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina - Materia
-
Steady-state gains
Subspace identification
Multivariable Processes
LP-MPC - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/8861
Ver los metadatos del registro completo
| id |
CONICETDig_e3a76a3654a544475120e251564c96cc |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/8861 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Detecting stationary gain changes in large process systemsBustos, Germán AndrésGonzález, Alejandro HernánMarchetti, Jacinto LuisSteady-state gainsSubspace identificationMultivariable ProcessesLP-MPChttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2https://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Stationary process gains are critical model parameters to determine targets in commercial MPC technologies. Consequently, important savings can be reached by acceding to an early prevention method capable of detecting whether the actual process moves away from the modeled dynamics or not, particularly by indicating when the process gains are not more represented by those included in the model identified during commissioning stages. In this first approach, a subspace identification method is used under open loop process condition to develop a process gain-matrix estimator. The main reason for using the subspace identification method is that it works directly with raw data and that the development is intended for monitoring future applications under multivariable closed-loop optimizing control where the transient regime is a frequent scenario. The objective of this paper is to present a method capable of detecting those gains of a multivariable model that start moving away from the original values. The anticipated knowledge of these events could provide a warning to process engineers and prevent from targeting process conditions with wrong gain estimations. The regular follow-up of the gain matrix should also help to localize those dynamics needing an updating identification.Fil: Bustos, Germán Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); ArgentinaFil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); ArgentinaFil: Marchetti, Jacinto Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); ArgentinaTaylor & Francis2013-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/8861Bustos, Germán Andrés; González, Alejandro Hernán; Marchetti, Jacinto Luis; Detecting stationary gain changes in large process systems; Taylor & Francis; Chemical Engineering Communications; 201; 5; 11-2013; 688-7080098-6445enginfo:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/00986445.2013.785945?journalCode=gcec20#previewinfo:eu-repo/semantics/altIdentifier/doi/10.1080/00986445.2013.785945info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:59:38Zoai:ri.conicet.gov.ar:11336/8861instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:59:38.342CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Detecting stationary gain changes in large process systems |
| title |
Detecting stationary gain changes in large process systems |
| spellingShingle |
Detecting stationary gain changes in large process systems Bustos, Germán Andrés Steady-state gains Subspace identification Multivariable Processes LP-MPC |
| title_short |
Detecting stationary gain changes in large process systems |
| title_full |
Detecting stationary gain changes in large process systems |
| title_fullStr |
Detecting stationary gain changes in large process systems |
| title_full_unstemmed |
Detecting stationary gain changes in large process systems |
| title_sort |
Detecting stationary gain changes in large process systems |
| dc.creator.none.fl_str_mv |
Bustos, Germán Andrés González, Alejandro Hernán Marchetti, Jacinto Luis |
| author |
Bustos, Germán Andrés |
| author_facet |
Bustos, Germán Andrés González, Alejandro Hernán Marchetti, Jacinto Luis |
| author_role |
author |
| author2 |
González, Alejandro Hernán Marchetti, Jacinto Luis |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Steady-state gains Subspace identification Multivariable Processes LP-MPC |
| topic |
Steady-state gains Subspace identification Multivariable Processes LP-MPC |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
Stationary process gains are critical model parameters to determine targets in commercial MPC technologies. Consequently, important savings can be reached by acceding to an early prevention method capable of detecting whether the actual process moves away from the modeled dynamics or not, particularly by indicating when the process gains are not more represented by those included in the model identified during commissioning stages. In this first approach, a subspace identification method is used under open loop process condition to develop a process gain-matrix estimator. The main reason for using the subspace identification method is that it works directly with raw data and that the development is intended for monitoring future applications under multivariable closed-loop optimizing control where the transient regime is a frequent scenario. The objective of this paper is to present a method capable of detecting those gains of a multivariable model that start moving away from the original values. The anticipated knowledge of these events could provide a warning to process engineers and prevent from targeting process conditions with wrong gain estimations. The regular follow-up of the gain matrix should also help to localize those dynamics needing an updating identification. Fil: Bustos, Germán Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina Fil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina Fil: Marchetti, Jacinto Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina |
| description |
Stationary process gains are critical model parameters to determine targets in commercial MPC technologies. Consequently, important savings can be reached by acceding to an early prevention method capable of detecting whether the actual process moves away from the modeled dynamics or not, particularly by indicating when the process gains are not more represented by those included in the model identified during commissioning stages. In this first approach, a subspace identification method is used under open loop process condition to develop a process gain-matrix estimator. The main reason for using the subspace identification method is that it works directly with raw data and that the development is intended for monitoring future applications under multivariable closed-loop optimizing control where the transient regime is a frequent scenario. The objective of this paper is to present a method capable of detecting those gains of a multivariable model that start moving away from the original values. The anticipated knowledge of these events could provide a warning to process engineers and prevent from targeting process conditions with wrong gain estimations. The regular follow-up of the gain matrix should also help to localize those dynamics needing an updating identification. |
| publishDate |
2013 |
| dc.date.none.fl_str_mv |
2013-11 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/8861 Bustos, Germán Andrés; González, Alejandro Hernán; Marchetti, Jacinto Luis; Detecting stationary gain changes in large process systems; Taylor & Francis; Chemical Engineering Communications; 201; 5; 11-2013; 688-708 0098-6445 |
| url |
http://hdl.handle.net/11336/8861 |
| identifier_str_mv |
Bustos, Germán Andrés; González, Alejandro Hernán; Marchetti, Jacinto Luis; Detecting stationary gain changes in large process systems; Taylor & Francis; Chemical Engineering Communications; 201; 5; 11-2013; 688-708 0098-6445 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/00986445.2013.785945?journalCode=gcec20#preview info:eu-repo/semantics/altIdentifier/doi/10.1080/00986445.2013.785945 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Taylor & Francis |
| publisher.none.fl_str_mv |
Taylor & Francis |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782317464387584 |
| score |
12.982451 |