Robust model predictive control of Wiener systems

Autores
Biagiola, Silvina Ines; Figueroa, Jose Luis
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Block-oriented models (BOMs) have shown to be appealing and efficient as nonlinear representations for many applications. They are at the same time valid and simple models in a more extensive region than time-invariant linear models. In this work, Wiener models are considered. They are one of the most diffused BOMs, and their structure consists in a linear dynamics in cascade with a nonlinear static block. Particularly, the problem of control of these systems in the presence of uncertainty is treated. The proposed methodology makes use of a robust identification procedure in order to obtain a robust model to represent the uncertain system. This model is then employed to design a model predictive controller. The mathematical problem involved in the controller design is formulated in the context of the existing linear matrix inequalities (LMI) theory. The main feature of this approach is that it takes advantage of the static nature of the nonlinearity, which allows to solve the control problem by focusing only in the linear dynamics. This formulation results in a simplified design procedure, because the original nonlinear model predictive control (MPC) problem turns into a linear one.
Fil: Biagiola, Silvina Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
Fil: Figueroa, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
Materia
WIENER SYSTEMS
MPC
IMI
UNCERTAINTY
OPTIMISATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/104061

id CONICETDig_adce0949eb1b45aa4e44aba3d80d5cbf
oai_identifier_str oai:ri.conicet.gov.ar:11336/104061
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Robust model predictive control of Wiener systemsBiagiola, Silvina InesFigueroa, Jose LuisWIENER SYSTEMSMPCIMIUNCERTAINTYOPTIMISATIONhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Block-oriented models (BOMs) have shown to be appealing and efficient as nonlinear representations for many applications. They are at the same time valid and simple models in a more extensive region than time-invariant linear models. In this work, Wiener models are considered. They are one of the most diffused BOMs, and their structure consists in a linear dynamics in cascade with a nonlinear static block. Particularly, the problem of control of these systems in the presence of uncertainty is treated. The proposed methodology makes use of a robust identification procedure in order to obtain a robust model to represent the uncertain system. This model is then employed to design a model predictive controller. The mathematical problem involved in the controller design is formulated in the context of the existing linear matrix inequalities (LMI) theory. The main feature of this approach is that it takes advantage of the static nature of the nonlinearity, which allows to solve the control problem by focusing only in the linear dynamics. This formulation results in a simplified design procedure, because the original nonlinear model predictive control (MPC) problem turns into a linear one.Fil: Biagiola, Silvina Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaFil: Figueroa, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaTaylor & Francis Ltd2011-03-18info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/104061Biagiola, Silvina Ines; Figueroa, Jose Luis; Robust model predictive control of Wiener systems; Taylor & Francis Ltd; International Journal Of Control; 84; 3; 18-3-2011; 432-4440020-7179CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/00207179.2011.560191info:eu-repo/semantics/altIdentifier/doi/10.1080/00207179.2011.560191info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:43:03Zoai:ri.conicet.gov.ar:11336/104061instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:43:04.094CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Robust model predictive control of Wiener systems
title Robust model predictive control of Wiener systems
spellingShingle Robust model predictive control of Wiener systems
Biagiola, Silvina Ines
WIENER SYSTEMS
MPC
IMI
UNCERTAINTY
OPTIMISATION
title_short Robust model predictive control of Wiener systems
title_full Robust model predictive control of Wiener systems
title_fullStr Robust model predictive control of Wiener systems
title_full_unstemmed Robust model predictive control of Wiener systems
title_sort Robust model predictive control of Wiener systems
dc.creator.none.fl_str_mv Biagiola, Silvina Ines
Figueroa, Jose Luis
author Biagiola, Silvina Ines
author_facet Biagiola, Silvina Ines
Figueroa, Jose Luis
author_role author
author2 Figueroa, Jose Luis
author2_role author
dc.subject.none.fl_str_mv WIENER SYSTEMS
MPC
IMI
UNCERTAINTY
OPTIMISATION
topic WIENER SYSTEMS
MPC
IMI
UNCERTAINTY
OPTIMISATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Block-oriented models (BOMs) have shown to be appealing and efficient as nonlinear representations for many applications. They are at the same time valid and simple models in a more extensive region than time-invariant linear models. In this work, Wiener models are considered. They are one of the most diffused BOMs, and their structure consists in a linear dynamics in cascade with a nonlinear static block. Particularly, the problem of control of these systems in the presence of uncertainty is treated. The proposed methodology makes use of a robust identification procedure in order to obtain a robust model to represent the uncertain system. This model is then employed to design a model predictive controller. The mathematical problem involved in the controller design is formulated in the context of the existing linear matrix inequalities (LMI) theory. The main feature of this approach is that it takes advantage of the static nature of the nonlinearity, which allows to solve the control problem by focusing only in the linear dynamics. This formulation results in a simplified design procedure, because the original nonlinear model predictive control (MPC) problem turns into a linear one.
Fil: Biagiola, Silvina Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
Fil: Figueroa, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; Argentina
description Block-oriented models (BOMs) have shown to be appealing and efficient as nonlinear representations for many applications. They are at the same time valid and simple models in a more extensive region than time-invariant linear models. In this work, Wiener models are considered. They are one of the most diffused BOMs, and their structure consists in a linear dynamics in cascade with a nonlinear static block. Particularly, the problem of control of these systems in the presence of uncertainty is treated. The proposed methodology makes use of a robust identification procedure in order to obtain a robust model to represent the uncertain system. This model is then employed to design a model predictive controller. The mathematical problem involved in the controller design is formulated in the context of the existing linear matrix inequalities (LMI) theory. The main feature of this approach is that it takes advantage of the static nature of the nonlinearity, which allows to solve the control problem by focusing only in the linear dynamics. This formulation results in a simplified design procedure, because the original nonlinear model predictive control (MPC) problem turns into a linear one.
publishDate 2011
dc.date.none.fl_str_mv 2011-03-18
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/104061
Biagiola, Silvina Ines; Figueroa, Jose Luis; Robust model predictive control of Wiener systems; Taylor & Francis Ltd; International Journal Of Control; 84; 3; 18-3-2011; 432-444
0020-7179
CONICET Digital
CONICET
url http://hdl.handle.net/11336/104061
identifier_str_mv Biagiola, Silvina Ines; Figueroa, Jose Luis; Robust model predictive control of Wiener systems; Taylor & Francis Ltd; International Journal Of Control; 84; 3; 18-3-2011; 432-444
0020-7179
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/00207179.2011.560191
info:eu-repo/semantics/altIdentifier/doi/10.1080/00207179.2011.560191
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis Ltd
publisher.none.fl_str_mv Taylor & Francis Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614465009483776
score 13.070432