Distributed Model Predictive Control Based on Dynamics Games
- Autores
- Giovanini, Leonardo Luis; Sanchez, Guido Marcelo; Murillo, Marina Hebe; Limache, Alejandro Cesar
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- parte de libro
- Estado
- versión publicada
- Descripción
- Model predictive control (MPC) is widely recognized as a high performance, yet practical, control technology. This model-based control strategy solves at each sample a discrete-time optimal control problem over a finite horizon, producing a control input sequence. An attractive attribute of MPC technology is its ability to systematically account for system constraints. The theory of MPC for linear systems is well developed; all aspects such as stability, robustness,feasibility and optimality have been extensively discussed in the literature (see, e.g., (Bemporad & Morari, 1999; Kouvaritakis & Cannon, 2001; Maciejowski, 2002; Mayne et al., 2000)). The effectiveness of MPC depends on model accuracy and the availability of fast computational resources. These requirements limit the application base for MPC. Even though, applications abound in process industries (Camacho & Bordons, 2004), manufacturing (Braun et al., 2003), supply chains (Perea-Lopez et al., 2003), among others, are becoming more widespread.
Fil: Giovanini, Leonardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Sanchez, Guido Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Murillo, Marina Hebe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Limache, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina - Materia
-
DISTRIBUTED-MPC
GAMES
MPC - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/110632
Ver los metadatos del registro completo
id |
CONICETDig_c8bc6aa9382bfcfbe0cef5ed903accf5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/110632 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Distributed Model Predictive Control Based on Dynamics GamesGiovanini, Leonardo LuisSanchez, Guido MarceloMurillo, Marina HebeLimache, Alejandro CesarDISTRIBUTED-MPCGAMESMPChttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Model predictive control (MPC) is widely recognized as a high performance, yet practical, control technology. This model-based control strategy solves at each sample a discrete-time optimal control problem over a finite horizon, producing a control input sequence. An attractive attribute of MPC technology is its ability to systematically account for system constraints. The theory of MPC for linear systems is well developed; all aspects such as stability, robustness,feasibility and optimality have been extensively discussed in the literature (see, e.g., (Bemporad & Morari, 1999; Kouvaritakis & Cannon, 2001; Maciejowski, 2002; Mayne et al., 2000)). The effectiveness of MPC depends on model accuracy and the availability of fast computational resources. These requirements limit the application base for MPC. Even though, applications abound in process industries (Camacho & Bordons, 2004), manufacturing (Braun et al., 2003), supply chains (Perea-Lopez et al., 2003), among others, are becoming more widespread.Fil: Giovanini, Leonardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Sanchez, Guido Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Murillo, Marina Hebe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Limache, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaIntechOpenZheng, Tao2011info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookParthttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/110632Giovanini, Leonardo Luis; Sanchez, Guido Marcelo; Murillo, Marina Hebe; Limache, Alejandro Cesar; Distributed Model Predictive Control Based on Dynamics Games; IntechOpen; 2011; 65-90978-953-307-298-2CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.intechopen.com/books/advanced-model-predictive-controlinfo:eu-repo/semantics/altIdentifier/url/https://www.intechopen.com/books/advanced-model-predictive-control/distributed-model-predictive-control-based-on-dynamic-gamesinfo:eu-repo/semantics/altIdentifier/doi/10.5772/16268info:eu-repo/semantics/altIdentifier/url/https://www.intechopen.com/chapters/16058info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:12:08Zoai:ri.conicet.gov.ar:11336/110632instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:12:08.864CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Distributed Model Predictive Control Based on Dynamics Games |
title |
Distributed Model Predictive Control Based on Dynamics Games |
spellingShingle |
Distributed Model Predictive Control Based on Dynamics Games Giovanini, Leonardo Luis DISTRIBUTED-MPC GAMES MPC |
title_short |
Distributed Model Predictive Control Based on Dynamics Games |
title_full |
Distributed Model Predictive Control Based on Dynamics Games |
title_fullStr |
Distributed Model Predictive Control Based on Dynamics Games |
title_full_unstemmed |
Distributed Model Predictive Control Based on Dynamics Games |
title_sort |
Distributed Model Predictive Control Based on Dynamics Games |
dc.creator.none.fl_str_mv |
Giovanini, Leonardo Luis Sanchez, Guido Marcelo Murillo, Marina Hebe Limache, Alejandro Cesar |
author |
Giovanini, Leonardo Luis |
author_facet |
Giovanini, Leonardo Luis Sanchez, Guido Marcelo Murillo, Marina Hebe Limache, Alejandro Cesar |
author_role |
author |
author2 |
Sanchez, Guido Marcelo Murillo, Marina Hebe Limache, Alejandro Cesar |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Zheng, Tao |
dc.subject.none.fl_str_mv |
DISTRIBUTED-MPC GAMES MPC |
topic |
DISTRIBUTED-MPC GAMES MPC |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Model predictive control (MPC) is widely recognized as a high performance, yet practical, control technology. This model-based control strategy solves at each sample a discrete-time optimal control problem over a finite horizon, producing a control input sequence. An attractive attribute of MPC technology is its ability to systematically account for system constraints. The theory of MPC for linear systems is well developed; all aspects such as stability, robustness,feasibility and optimality have been extensively discussed in the literature (see, e.g., (Bemporad & Morari, 1999; Kouvaritakis & Cannon, 2001; Maciejowski, 2002; Mayne et al., 2000)). The effectiveness of MPC depends on model accuracy and the availability of fast computational resources. These requirements limit the application base for MPC. Even though, applications abound in process industries (Camacho & Bordons, 2004), manufacturing (Braun et al., 2003), supply chains (Perea-Lopez et al., 2003), among others, are becoming more widespread. Fil: Giovanini, Leonardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Sanchez, Guido Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Murillo, Marina Hebe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Limache, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina |
description |
Model predictive control (MPC) is widely recognized as a high performance, yet practical, control technology. This model-based control strategy solves at each sample a discrete-time optimal control problem over a finite horizon, producing a control input sequence. An attractive attribute of MPC technology is its ability to systematically account for system constraints. The theory of MPC for linear systems is well developed; all aspects such as stability, robustness,feasibility and optimality have been extensively discussed in the literature (see, e.g., (Bemporad & Morari, 1999; Kouvaritakis & Cannon, 2001; Maciejowski, 2002; Mayne et al., 2000)). The effectiveness of MPC depends on model accuracy and the availability of fast computational resources. These requirements limit the application base for MPC. Even though, applications abound in process industries (Camacho & Bordons, 2004), manufacturing (Braun et al., 2003), supply chains (Perea-Lopez et al., 2003), among others, are becoming more widespread. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/bookPart http://purl.org/coar/resource_type/c_3248 info:ar-repo/semantics/parteDeLibro |
status_str |
publishedVersion |
format |
bookPart |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/110632 Giovanini, Leonardo Luis; Sanchez, Guido Marcelo; Murillo, Marina Hebe; Limache, Alejandro Cesar; Distributed Model Predictive Control Based on Dynamics Games; IntechOpen; 2011; 65-90 978-953-307-298-2 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/110632 |
identifier_str_mv |
Giovanini, Leonardo Luis; Sanchez, Guido Marcelo; Murillo, Marina Hebe; Limache, Alejandro Cesar; Distributed Model Predictive Control Based on Dynamics Games; IntechOpen; 2011; 65-90 978-953-307-298-2 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.intechopen.com/books/advanced-model-predictive-control info:eu-repo/semantics/altIdentifier/url/https://www.intechopen.com/books/advanced-model-predictive-control/distributed-model-predictive-control-based-on-dynamic-games info:eu-repo/semantics/altIdentifier/doi/10.5772/16268 info:eu-repo/semantics/altIdentifier/url/https://www.intechopen.com/chapters/16058 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IntechOpen |
publisher.none.fl_str_mv |
IntechOpen |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614025815523328 |
score |
13.070432 |