Distributed Model Predictive Control Based on Dynamics Games

Autores
Giovanini, Leonardo Luis; Sanchez, Guido Marcelo; Murillo, Marina Hebe; Limache, Alejandro Cesar
Año de publicación
2011
Idioma
inglés
Tipo de recurso
parte de libro
Estado
versión publicada
Descripción
Model predictive control (MPC) is widely recognized as a high performance, yet practical, control technology. This model-based control strategy solves at each sample a discrete-time optimal control problem over a finite horizon, producing a control input sequence. An attractive attribute of MPC technology is its ability to systematically account for system constraints. The theory of MPC for linear systems is well developed; all aspects such as stability, robustness,feasibility and optimality have been extensively discussed in the literature (see, e.g., (Bemporad & Morari, 1999; Kouvaritakis & Cannon, 2001; Maciejowski, 2002; Mayne et al., 2000)). The effectiveness of MPC depends on model accuracy and the availability of fast computational resources. These requirements limit the application base for MPC. Even though, applications abound in process industries (Camacho & Bordons, 2004), manufacturing (Braun et al., 2003), supply chains (Perea-Lopez et al., 2003), among others, are becoming more widespread.
Fil: Giovanini, Leonardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Sanchez, Guido Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Murillo, Marina Hebe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Limache, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Materia
DISTRIBUTED-MPC
GAMES
MPC
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/110632

id CONICETDig_c8bc6aa9382bfcfbe0cef5ed903accf5
oai_identifier_str oai:ri.conicet.gov.ar:11336/110632
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Distributed Model Predictive Control Based on Dynamics GamesGiovanini, Leonardo LuisSanchez, Guido MarceloMurillo, Marina HebeLimache, Alejandro CesarDISTRIBUTED-MPCGAMESMPChttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Model predictive control (MPC) is widely recognized as a high performance, yet practical, control technology. This model-based control strategy solves at each sample a discrete-time optimal control problem over a finite horizon, producing a control input sequence. An attractive attribute of MPC technology is its ability to systematically account for system constraints. The theory of MPC for linear systems is well developed; all aspects such as stability, robustness,feasibility and optimality have been extensively discussed in the literature (see, e.g., (Bemporad & Morari, 1999; Kouvaritakis & Cannon, 2001; Maciejowski, 2002; Mayne et al., 2000)). The effectiveness of MPC depends on model accuracy and the availability of fast computational resources. These requirements limit the application base for MPC. Even though, applications abound in process industries (Camacho & Bordons, 2004), manufacturing (Braun et al., 2003), supply chains (Perea-Lopez et al., 2003), among others, are becoming more widespread.Fil: Giovanini, Leonardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Sanchez, Guido Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Murillo, Marina Hebe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Limache, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaIntechOpenZheng, Tao2011info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookParthttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/110632Giovanini, Leonardo Luis; Sanchez, Guido Marcelo; Murillo, Marina Hebe; Limache, Alejandro Cesar; Distributed Model Predictive Control Based on Dynamics Games; IntechOpen; 2011; 65-90978-953-307-298-2CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.intechopen.com/books/advanced-model-predictive-controlinfo:eu-repo/semantics/altIdentifier/url/https://www.intechopen.com/books/advanced-model-predictive-control/distributed-model-predictive-control-based-on-dynamic-gamesinfo:eu-repo/semantics/altIdentifier/doi/10.5772/16268info:eu-repo/semantics/altIdentifier/url/https://www.intechopen.com/chapters/16058info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:12:08Zoai:ri.conicet.gov.ar:11336/110632instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:12:08.864CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Distributed Model Predictive Control Based on Dynamics Games
title Distributed Model Predictive Control Based on Dynamics Games
spellingShingle Distributed Model Predictive Control Based on Dynamics Games
Giovanini, Leonardo Luis
DISTRIBUTED-MPC
GAMES
MPC
title_short Distributed Model Predictive Control Based on Dynamics Games
title_full Distributed Model Predictive Control Based on Dynamics Games
title_fullStr Distributed Model Predictive Control Based on Dynamics Games
title_full_unstemmed Distributed Model Predictive Control Based on Dynamics Games
title_sort Distributed Model Predictive Control Based on Dynamics Games
dc.creator.none.fl_str_mv Giovanini, Leonardo Luis
Sanchez, Guido Marcelo
Murillo, Marina Hebe
Limache, Alejandro Cesar
author Giovanini, Leonardo Luis
author_facet Giovanini, Leonardo Luis
Sanchez, Guido Marcelo
Murillo, Marina Hebe
Limache, Alejandro Cesar
author_role author
author2 Sanchez, Guido Marcelo
Murillo, Marina Hebe
Limache, Alejandro Cesar
author2_role author
author
author
dc.contributor.none.fl_str_mv Zheng, Tao
dc.subject.none.fl_str_mv DISTRIBUTED-MPC
GAMES
MPC
topic DISTRIBUTED-MPC
GAMES
MPC
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Model predictive control (MPC) is widely recognized as a high performance, yet practical, control technology. This model-based control strategy solves at each sample a discrete-time optimal control problem over a finite horizon, producing a control input sequence. An attractive attribute of MPC technology is its ability to systematically account for system constraints. The theory of MPC for linear systems is well developed; all aspects such as stability, robustness,feasibility and optimality have been extensively discussed in the literature (see, e.g., (Bemporad & Morari, 1999; Kouvaritakis & Cannon, 2001; Maciejowski, 2002; Mayne et al., 2000)). The effectiveness of MPC depends on model accuracy and the availability of fast computational resources. These requirements limit the application base for MPC. Even though, applications abound in process industries (Camacho & Bordons, 2004), manufacturing (Braun et al., 2003), supply chains (Perea-Lopez et al., 2003), among others, are becoming more widespread.
Fil: Giovanini, Leonardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Sanchez, Guido Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Murillo, Marina Hebe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Limache, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
description Model predictive control (MPC) is widely recognized as a high performance, yet practical, control technology. This model-based control strategy solves at each sample a discrete-time optimal control problem over a finite horizon, producing a control input sequence. An attractive attribute of MPC technology is its ability to systematically account for system constraints. The theory of MPC for linear systems is well developed; all aspects such as stability, robustness,feasibility and optimality have been extensively discussed in the literature (see, e.g., (Bemporad & Morari, 1999; Kouvaritakis & Cannon, 2001; Maciejowski, 2002; Mayne et al., 2000)). The effectiveness of MPC depends on model accuracy and the availability of fast computational resources. These requirements limit the application base for MPC. Even though, applications abound in process industries (Camacho & Bordons, 2004), manufacturing (Braun et al., 2003), supply chains (Perea-Lopez et al., 2003), among others, are becoming more widespread.
publishDate 2011
dc.date.none.fl_str_mv 2011
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/bookPart
http://purl.org/coar/resource_type/c_3248
info:ar-repo/semantics/parteDeLibro
status_str publishedVersion
format bookPart
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/110632
Giovanini, Leonardo Luis; Sanchez, Guido Marcelo; Murillo, Marina Hebe; Limache, Alejandro Cesar; Distributed Model Predictive Control Based on Dynamics Games; IntechOpen; 2011; 65-90
978-953-307-298-2
CONICET Digital
CONICET
url http://hdl.handle.net/11336/110632
identifier_str_mv Giovanini, Leonardo Luis; Sanchez, Guido Marcelo; Murillo, Marina Hebe; Limache, Alejandro Cesar; Distributed Model Predictive Control Based on Dynamics Games; IntechOpen; 2011; 65-90
978-953-307-298-2
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.intechopen.com/books/advanced-model-predictive-control
info:eu-repo/semantics/altIdentifier/url/https://www.intechopen.com/books/advanced-model-predictive-control/distributed-model-predictive-control-based-on-dynamic-games
info:eu-repo/semantics/altIdentifier/doi/10.5772/16268
info:eu-repo/semantics/altIdentifier/url/https://www.intechopen.com/chapters/16058
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv IntechOpen
publisher.none.fl_str_mv IntechOpen
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614025815523328
score 13.070432