Quasifinite representations of classical Lie subalgebras of W∞,p
- Autores
- Garcia, José Ignacio; Liberati, Jose Ignacio
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We show that there are exactly two anti-involution σ± of the algebra of differential operators on the circle that are a multiple of p(t∂t) preserving the principal gradation (p ∈ C[x] non-constant). We classify the irreducible quasifinite highest weight representations of the central extension Db± p of the Lie subalgebra fixed by −σ±. The most important cases are the subalgebras Db± x of W∞, that are obtained when p(x) = x. In these cases we realize the irreducible quasifinite highest weight modules in terms of highest weight representation of the central extension of the Lie algebra of infinite matrices with finitely many non-zero diagonals over the algebra C[u]/(u m+1) and its classical Lie subalgebras of C and D types.
Fil: Garcia, José Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Liberati, Jose Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
- Algebra
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/230792
Ver los metadatos del registro completo
id |
CONICETDig_e2dfb1663220fe4a4ea3cdabae82cb64 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/230792 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Quasifinite representations of classical Lie subalgebras of W∞,pGarcia, José IgnacioLiberati, Jose IgnacioAlgebrahttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We show that there are exactly two anti-involution σ± of the algebra of differential operators on the circle that are a multiple of p(t∂t) preserving the principal gradation (p ∈ C[x] non-constant). We classify the irreducible quasifinite highest weight representations of the central extension Db± p of the Lie subalgebra fixed by −σ±. The most important cases are the subalgebras Db± x of W∞, that are obtained when p(x) = x. In these cases we realize the irreducible quasifinite highest weight modules in terms of highest weight representation of the central extension of the Lie algebra of infinite matrices with finitely many non-zero diagonals over the algebra C[u]/(u m+1) and its classical Lie subalgebras of C and D types.Fil: Garcia, José Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Liberati, Jose Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaAmerican Institute of Physics2012-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/230792Garcia, José Ignacio; Liberati, Jose Ignacio; Quasifinite representations of classical Lie subalgebras of W∞,p; American Institute of Physics; Journal of Mathematical Physics; 54; 7; 7-2012; 1-251111-1119CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1207.1151info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4812556info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:22:21Zoai:ri.conicet.gov.ar:11336/230792instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:22:21.26CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Quasifinite representations of classical Lie subalgebras of W∞,p |
title |
Quasifinite representations of classical Lie subalgebras of W∞,p |
spellingShingle |
Quasifinite representations of classical Lie subalgebras of W∞,p Garcia, José Ignacio Algebra |
title_short |
Quasifinite representations of classical Lie subalgebras of W∞,p |
title_full |
Quasifinite representations of classical Lie subalgebras of W∞,p |
title_fullStr |
Quasifinite representations of classical Lie subalgebras of W∞,p |
title_full_unstemmed |
Quasifinite representations of classical Lie subalgebras of W∞,p |
title_sort |
Quasifinite representations of classical Lie subalgebras of W∞,p |
dc.creator.none.fl_str_mv |
Garcia, José Ignacio Liberati, Jose Ignacio |
author |
Garcia, José Ignacio |
author_facet |
Garcia, José Ignacio Liberati, Jose Ignacio |
author_role |
author |
author2 |
Liberati, Jose Ignacio |
author2_role |
author |
dc.subject.none.fl_str_mv |
Algebra |
topic |
Algebra |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We show that there are exactly two anti-involution σ± of the algebra of differential operators on the circle that are a multiple of p(t∂t) preserving the principal gradation (p ∈ C[x] non-constant). We classify the irreducible quasifinite highest weight representations of the central extension Db± p of the Lie subalgebra fixed by −σ±. The most important cases are the subalgebras Db± x of W∞, that are obtained when p(x) = x. In these cases we realize the irreducible quasifinite highest weight modules in terms of highest weight representation of the central extension of the Lie algebra of infinite matrices with finitely many non-zero diagonals over the algebra C[u]/(u m+1) and its classical Lie subalgebras of C and D types. Fil: Garcia, José Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Liberati, Jose Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
We show that there are exactly two anti-involution σ± of the algebra of differential operators on the circle that are a multiple of p(t∂t) preserving the principal gradation (p ∈ C[x] non-constant). We classify the irreducible quasifinite highest weight representations of the central extension Db± p of the Lie subalgebra fixed by −σ±. The most important cases are the subalgebras Db± x of W∞, that are obtained when p(x) = x. In these cases we realize the irreducible quasifinite highest weight modules in terms of highest weight representation of the central extension of the Lie algebra of infinite matrices with finitely many non-zero diagonals over the algebra C[u]/(u m+1) and its classical Lie subalgebras of C and D types. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/230792 Garcia, José Ignacio; Liberati, Jose Ignacio; Quasifinite representations of classical Lie subalgebras of W∞,p; American Institute of Physics; Journal of Mathematical Physics; 54; 7; 7-2012; 1-25 1111-1119 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/230792 |
identifier_str_mv |
Garcia, José Ignacio; Liberati, Jose Ignacio; Quasifinite representations of classical Lie subalgebras of W∞,p; American Institute of Physics; Journal of Mathematical Physics; 54; 7; 7-2012; 1-25 1111-1119 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1207.1151 info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4812556 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981230687027200 |
score |
12.493442 |