Quasifinite representations of classical Lie subalgebras of W∞, p
- Autores
- Garcia, José Ignacio; Liberati, Jose Ignacio
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We show that there are exactly two anti-involutions σ± of the algebra of differential operators on the circle that are a multiple of p(t∂t) preserving the principal gradation (p∈C[x]p∈C[x] non-constant). We classify the irreducible quasifinite highest weight representations of the central extension Dˆ±pD̂p± of the Lie subalgebra fixed by −σ±. The most important cases are the subalgebras Dˆ±xD̂x± of W∞ that are obtained when p(x) = x. In these cases, we realize the irreducible quasifinite highest weight modules in terms of highest weight representation of the central extension of the Lie algebra of infinite matrices with finitely many nonzero diagonals over the algebra C[u]/(um+1)C[u]/(um+1) and its classical Lie subalgebras of C and D types.
Fil: Garcia, José Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina
Fil: Liberati, Jose Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina - Materia
-
quasifinite
lie superalgebra - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/10880
Ver los metadatos del registro completo
id |
CONICETDig_b70c33d7b670c4f6c59366a47b571fa8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/10880 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Quasifinite representations of classical Lie subalgebras of W∞, pGarcia, José IgnacioLiberati, Jose Ignacioquasifinitelie superalgebrahttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We show that there are exactly two anti-involutions σ± of the algebra of differential operators on the circle that are a multiple of p(t∂t) preserving the principal gradation (p∈C[x]p∈C[x] non-constant). We classify the irreducible quasifinite highest weight representations of the central extension Dˆ±pD̂p± of the Lie subalgebra fixed by −σ±. The most important cases are the subalgebras Dˆ±xD̂x± of W∞ that are obtained when p(x) = x. In these cases, we realize the irreducible quasifinite highest weight modules in terms of highest weight representation of the central extension of the Lie algebra of infinite matrices with finitely many nonzero diagonals over the algebra C[u]/(um+1)C[u]/(um+1) and its classical Lie subalgebras of C and D types.Fil: Garcia, José Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); ArgentinaFil: Liberati, Jose Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); ArgentinaAmerican Institute Of Physics2013-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/10880Garcia, José Ignacio; Liberati, Jose Ignacio; Quasifinite representations of classical Lie subalgebras of W∞, p; American Institute Of Physics; Journal Of Mathematical Physics; 54; 7-20130022-2488enginfo:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.4812556info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1063/1.4812556info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:52:42Zoai:ri.conicet.gov.ar:11336/10880instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:52:42.665CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Quasifinite representations of classical Lie subalgebras of W∞, p |
title |
Quasifinite representations of classical Lie subalgebras of W∞, p |
spellingShingle |
Quasifinite representations of classical Lie subalgebras of W∞, p Garcia, José Ignacio quasifinite lie superalgebra |
title_short |
Quasifinite representations of classical Lie subalgebras of W∞, p |
title_full |
Quasifinite representations of classical Lie subalgebras of W∞, p |
title_fullStr |
Quasifinite representations of classical Lie subalgebras of W∞, p |
title_full_unstemmed |
Quasifinite representations of classical Lie subalgebras of W∞, p |
title_sort |
Quasifinite representations of classical Lie subalgebras of W∞, p |
dc.creator.none.fl_str_mv |
Garcia, José Ignacio Liberati, Jose Ignacio |
author |
Garcia, José Ignacio |
author_facet |
Garcia, José Ignacio Liberati, Jose Ignacio |
author_role |
author |
author2 |
Liberati, Jose Ignacio |
author2_role |
author |
dc.subject.none.fl_str_mv |
quasifinite lie superalgebra |
topic |
quasifinite lie superalgebra |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We show that there are exactly two anti-involutions σ± of the algebra of differential operators on the circle that are a multiple of p(t∂t) preserving the principal gradation (p∈C[x]p∈C[x] non-constant). We classify the irreducible quasifinite highest weight representations of the central extension Dˆ±pD̂p± of the Lie subalgebra fixed by −σ±. The most important cases are the subalgebras Dˆ±xD̂x± of W∞ that are obtained when p(x) = x. In these cases, we realize the irreducible quasifinite highest weight modules in terms of highest weight representation of the central extension of the Lie algebra of infinite matrices with finitely many nonzero diagonals over the algebra C[u]/(um+1)C[u]/(um+1) and its classical Lie subalgebras of C and D types. Fil: Garcia, José Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina Fil: Liberati, Jose Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina |
description |
We show that there are exactly two anti-involutions σ± of the algebra of differential operators on the circle that are a multiple of p(t∂t) preserving the principal gradation (p∈C[x]p∈C[x] non-constant). We classify the irreducible quasifinite highest weight representations of the central extension Dˆ±pD̂p± of the Lie subalgebra fixed by −σ±. The most important cases are the subalgebras Dˆ±xD̂x± of W∞ that are obtained when p(x) = x. In these cases, we realize the irreducible quasifinite highest weight modules in terms of highest weight representation of the central extension of the Lie algebra of infinite matrices with finitely many nonzero diagonals over the algebra C[u]/(um+1)C[u]/(um+1) and its classical Lie subalgebras of C and D types. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/10880 Garcia, José Ignacio; Liberati, Jose Ignacio; Quasifinite representations of classical Lie subalgebras of W∞, p; American Institute Of Physics; Journal Of Mathematical Physics; 54; 7-2013 0022-2488 |
url |
http://hdl.handle.net/11336/10880 |
identifier_str_mv |
Garcia, José Ignacio; Liberati, Jose Ignacio; Quasifinite representations of classical Lie subalgebras of W∞, p; American Institute Of Physics; Journal Of Mathematical Physics; 54; 7-2013 0022-2488 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.4812556 info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1063/1.4812556 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute Of Physics |
publisher.none.fl_str_mv |
American Institute Of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083055887843328 |
score |
13.22299 |