A Geometric Index Reduction Method for Implicit Systems of Differential Algebraic Equations

Autores
D'alfonso, L.; Jeronimo, Gabriela Tali; Ollivier, F.; Sedoglavic. A.; Solernó, Pablo Luis
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper deals with the index reduction problem for the class of quasi-regular DAE systems. It is shown that any of these systems can be transformed to a generically equivalent first order DAE system consisting of a single purely algebraic (polynomial) equation plus an under-determined ODE (a differential Kronecker representation) in as many variables as the order of the input system. This can be done by means of a Kronecker-type algorithm with bounded complexity.
Fil: D'alfonso, L.. Universidad de Buenos Aires; Argentina
Fil: Jeronimo, Gabriela Tali. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Ollivier, F.. Centre National de la Recherche Scientifique; Francia
Fil: Sedoglavic. A.. Centre National de la Recherche Scientifique; Francia
Fil: Solernó, Pablo Luis. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
Dae Systems
Differentiation Index
Kronecker Algorithm
Geometric Resolution
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/14923

id CONICETDig_e164f8691fb997a14a64503651e51164
oai_identifier_str oai:ri.conicet.gov.ar:11336/14923
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A Geometric Index Reduction Method for Implicit Systems of Differential Algebraic EquationsD'alfonso, L.Jeronimo, Gabriela TaliOllivier, F.Sedoglavic. A.Solernó, Pablo LuisDae SystemsDifferentiation IndexKronecker AlgorithmGeometric Resolutionhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This paper deals with the index reduction problem for the class of quasi-regular DAE systems. It is shown that any of these systems can be transformed to a generically equivalent first order DAE system consisting of a single purely algebraic (polynomial) equation plus an under-determined ODE (a differential Kronecker representation) in as many variables as the order of the input system. This can be done by means of a Kronecker-type algorithm with bounded complexity.Fil: D'alfonso, L.. Universidad de Buenos Aires; ArgentinaFil: Jeronimo, Gabriela Tali. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Ollivier, F.. Centre National de la Recherche Scientifique; FranciaFil: Sedoglavic. A.. Centre National de la Recherche Scientifique; FranciaFil: Solernó, Pablo Luis. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaElsevier2011-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14923D'alfonso, L.; Jeronimo, Gabriela Tali; Ollivier, F.; Sedoglavic. A.; Solernó, Pablo Luis; A Geometric Index Reduction Method for Implicit Systems of Differential Algebraic Equations; Elsevier; Journal Of Symbolic Computation; 46; 10; 6-2011; 1114-11380747-7171enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0747717111000836info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jsc.2011.05.012info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:07:51Zoai:ri.conicet.gov.ar:11336/14923instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:07:51.553CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A Geometric Index Reduction Method for Implicit Systems of Differential Algebraic Equations
title A Geometric Index Reduction Method for Implicit Systems of Differential Algebraic Equations
spellingShingle A Geometric Index Reduction Method for Implicit Systems of Differential Algebraic Equations
D'alfonso, L.
Dae Systems
Differentiation Index
Kronecker Algorithm
Geometric Resolution
title_short A Geometric Index Reduction Method for Implicit Systems of Differential Algebraic Equations
title_full A Geometric Index Reduction Method for Implicit Systems of Differential Algebraic Equations
title_fullStr A Geometric Index Reduction Method for Implicit Systems of Differential Algebraic Equations
title_full_unstemmed A Geometric Index Reduction Method for Implicit Systems of Differential Algebraic Equations
title_sort A Geometric Index Reduction Method for Implicit Systems of Differential Algebraic Equations
dc.creator.none.fl_str_mv D'alfonso, L.
Jeronimo, Gabriela Tali
Ollivier, F.
Sedoglavic. A.
Solernó, Pablo Luis
author D'alfonso, L.
author_facet D'alfonso, L.
Jeronimo, Gabriela Tali
Ollivier, F.
Sedoglavic. A.
Solernó, Pablo Luis
author_role author
author2 Jeronimo, Gabriela Tali
Ollivier, F.
Sedoglavic. A.
Solernó, Pablo Luis
author2_role author
author
author
author
dc.subject.none.fl_str_mv Dae Systems
Differentiation Index
Kronecker Algorithm
Geometric Resolution
topic Dae Systems
Differentiation Index
Kronecker Algorithm
Geometric Resolution
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv This paper deals with the index reduction problem for the class of quasi-regular DAE systems. It is shown that any of these systems can be transformed to a generically equivalent first order DAE system consisting of a single purely algebraic (polynomial) equation plus an under-determined ODE (a differential Kronecker representation) in as many variables as the order of the input system. This can be done by means of a Kronecker-type algorithm with bounded complexity.
Fil: D'alfonso, L.. Universidad de Buenos Aires; Argentina
Fil: Jeronimo, Gabriela Tali. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Ollivier, F.. Centre National de la Recherche Scientifique; Francia
Fil: Sedoglavic. A.. Centre National de la Recherche Scientifique; Francia
Fil: Solernó, Pablo Luis. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description This paper deals with the index reduction problem for the class of quasi-regular DAE systems. It is shown that any of these systems can be transformed to a generically equivalent first order DAE system consisting of a single purely algebraic (polynomial) equation plus an under-determined ODE (a differential Kronecker representation) in as many variables as the order of the input system. This can be done by means of a Kronecker-type algorithm with bounded complexity.
publishDate 2011
dc.date.none.fl_str_mv 2011-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/14923
D'alfonso, L.; Jeronimo, Gabriela Tali; Ollivier, F.; Sedoglavic. A.; Solernó, Pablo Luis; A Geometric Index Reduction Method for Implicit Systems of Differential Algebraic Equations; Elsevier; Journal Of Symbolic Computation; 46; 10; 6-2011; 1114-1138
0747-7171
url http://hdl.handle.net/11336/14923
identifier_str_mv D'alfonso, L.; Jeronimo, Gabriela Tali; Ollivier, F.; Sedoglavic. A.; Solernó, Pablo Luis; A Geometric Index Reduction Method for Implicit Systems of Differential Algebraic Equations; Elsevier; Journal Of Symbolic Computation; 46; 10; 6-2011; 1114-1138
0747-7171
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0747717111000836
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jsc.2011.05.012
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781399899570176
score 12.982451