A geometric index reduction method for implicit systems of differential algebraic equations
- Autores
- D'Alfonso, L.; Jeronimo, G.; Ollivier, F.; Sedoglavic, A.; Solernó, P.
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper deals with the index reduction problem for the class of quasi-regular DAE systems. It is shown that any of these systems can be transformed to a generically equivalent first order DAE system consisting of a single purely algebraic (polynomial) equation plus an under-determined ODE (a differential Kronecker representation) in as many variables as the order of the input system. This can be done by means of a Kronecker-type algorithm with bounded complexity. © 2011 Elsevier Ltd.
Fil:Jeronimo, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Solernó, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Symb. Comput. 2011;46(10):1114-1138
- Materia
-
Geometric resolution
Implicit systems of Differential Algebraic Equations
Index
Kronecker algorithm - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_07477171_v46_n10_p1114_DAlfonso
Ver los metadatos del registro completo
id |
BDUBAFCEN_7d5f0928bdf2949facf83f85ec3bbebe |
---|---|
oai_identifier_str |
paperaa:paper_07477171_v46_n10_p1114_DAlfonso |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
A geometric index reduction method for implicit systems of differential algebraic equationsD'Alfonso, L.Jeronimo, G.Ollivier, F.Sedoglavic, A.Solernó, P.Geometric resolutionImplicit systems of Differential Algebraic EquationsIndexKronecker algorithmThis paper deals with the index reduction problem for the class of quasi-regular DAE systems. It is shown that any of these systems can be transformed to a generically equivalent first order DAE system consisting of a single purely algebraic (polynomial) equation plus an under-determined ODE (a differential Kronecker representation) in as many variables as the order of the input system. This can be done by means of a Kronecker-type algorithm with bounded complexity. © 2011 Elsevier Ltd.Fil:Jeronimo, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Solernó, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_07477171_v46_n10_p1114_DAlfonsoJ. Symb. Comput. 2011;46(10):1114-1138reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:05Zpaperaa:paper_07477171_v46_n10_p1114_DAlfonsoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:07.206Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
A geometric index reduction method for implicit systems of differential algebraic equations |
title |
A geometric index reduction method for implicit systems of differential algebraic equations |
spellingShingle |
A geometric index reduction method for implicit systems of differential algebraic equations D'Alfonso, L. Geometric resolution Implicit systems of Differential Algebraic Equations Index Kronecker algorithm |
title_short |
A geometric index reduction method for implicit systems of differential algebraic equations |
title_full |
A geometric index reduction method for implicit systems of differential algebraic equations |
title_fullStr |
A geometric index reduction method for implicit systems of differential algebraic equations |
title_full_unstemmed |
A geometric index reduction method for implicit systems of differential algebraic equations |
title_sort |
A geometric index reduction method for implicit systems of differential algebraic equations |
dc.creator.none.fl_str_mv |
D'Alfonso, L. Jeronimo, G. Ollivier, F. Sedoglavic, A. Solernó, P. |
author |
D'Alfonso, L. |
author_facet |
D'Alfonso, L. Jeronimo, G. Ollivier, F. Sedoglavic, A. Solernó, P. |
author_role |
author |
author2 |
Jeronimo, G. Ollivier, F. Sedoglavic, A. Solernó, P. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Geometric resolution Implicit systems of Differential Algebraic Equations Index Kronecker algorithm |
topic |
Geometric resolution Implicit systems of Differential Algebraic Equations Index Kronecker algorithm |
dc.description.none.fl_txt_mv |
This paper deals with the index reduction problem for the class of quasi-regular DAE systems. It is shown that any of these systems can be transformed to a generically equivalent first order DAE system consisting of a single purely algebraic (polynomial) equation plus an under-determined ODE (a differential Kronecker representation) in as many variables as the order of the input system. This can be done by means of a Kronecker-type algorithm with bounded complexity. © 2011 Elsevier Ltd. Fil:Jeronimo, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Solernó, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
This paper deals with the index reduction problem for the class of quasi-regular DAE systems. It is shown that any of these systems can be transformed to a generically equivalent first order DAE system consisting of a single purely algebraic (polynomial) equation plus an under-determined ODE (a differential Kronecker representation) in as many variables as the order of the input system. This can be done by means of a Kronecker-type algorithm with bounded complexity. © 2011 Elsevier Ltd. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_07477171_v46_n10_p1114_DAlfonso |
url |
http://hdl.handle.net/20.500.12110/paper_07477171_v46_n10_p1114_DAlfonso |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Symb. Comput. 2011;46(10):1114-1138 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618739404767232 |
score |
13.070432 |