A geometric index reduction method for implicit systems of differential algebraic equations

Autores
D'Alfonso, L.; Jeronimo, G.; Ollivier, F.; Sedoglavic, A.; Solernó, P.
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper deals with the index reduction problem for the class of quasi-regular DAE systems. It is shown that any of these systems can be transformed to a generically equivalent first order DAE system consisting of a single purely algebraic (polynomial) equation plus an under-determined ODE (a differential Kronecker representation) in as many variables as the order of the input system. This can be done by means of a Kronecker-type algorithm with bounded complexity. © 2011 Elsevier Ltd.
Fil:Jeronimo, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Solernó, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Symb. Comput. 2011;46(10):1114-1138
Materia
Geometric resolution
Implicit systems of Differential Algebraic Equations
Index
Kronecker algorithm
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_07477171_v46_n10_p1114_DAlfonso

id BDUBAFCEN_7d5f0928bdf2949facf83f85ec3bbebe
oai_identifier_str paperaa:paper_07477171_v46_n10_p1114_DAlfonso
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling A geometric index reduction method for implicit systems of differential algebraic equationsD'Alfonso, L.Jeronimo, G.Ollivier, F.Sedoglavic, A.Solernó, P.Geometric resolutionImplicit systems of Differential Algebraic EquationsIndexKronecker algorithmThis paper deals with the index reduction problem for the class of quasi-regular DAE systems. It is shown that any of these systems can be transformed to a generically equivalent first order DAE system consisting of a single purely algebraic (polynomial) equation plus an under-determined ODE (a differential Kronecker representation) in as many variables as the order of the input system. This can be done by means of a Kronecker-type algorithm with bounded complexity. © 2011 Elsevier Ltd.Fil:Jeronimo, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Solernó, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_07477171_v46_n10_p1114_DAlfonsoJ. Symb. Comput. 2011;46(10):1114-1138reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:05Zpaperaa:paper_07477171_v46_n10_p1114_DAlfonsoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:07.206Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv A geometric index reduction method for implicit systems of differential algebraic equations
title A geometric index reduction method for implicit systems of differential algebraic equations
spellingShingle A geometric index reduction method for implicit systems of differential algebraic equations
D'Alfonso, L.
Geometric resolution
Implicit systems of Differential Algebraic Equations
Index
Kronecker algorithm
title_short A geometric index reduction method for implicit systems of differential algebraic equations
title_full A geometric index reduction method for implicit systems of differential algebraic equations
title_fullStr A geometric index reduction method for implicit systems of differential algebraic equations
title_full_unstemmed A geometric index reduction method for implicit systems of differential algebraic equations
title_sort A geometric index reduction method for implicit systems of differential algebraic equations
dc.creator.none.fl_str_mv D'Alfonso, L.
Jeronimo, G.
Ollivier, F.
Sedoglavic, A.
Solernó, P.
author D'Alfonso, L.
author_facet D'Alfonso, L.
Jeronimo, G.
Ollivier, F.
Sedoglavic, A.
Solernó, P.
author_role author
author2 Jeronimo, G.
Ollivier, F.
Sedoglavic, A.
Solernó, P.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Geometric resolution
Implicit systems of Differential Algebraic Equations
Index
Kronecker algorithm
topic Geometric resolution
Implicit systems of Differential Algebraic Equations
Index
Kronecker algorithm
dc.description.none.fl_txt_mv This paper deals with the index reduction problem for the class of quasi-regular DAE systems. It is shown that any of these systems can be transformed to a generically equivalent first order DAE system consisting of a single purely algebraic (polynomial) equation plus an under-determined ODE (a differential Kronecker representation) in as many variables as the order of the input system. This can be done by means of a Kronecker-type algorithm with bounded complexity. © 2011 Elsevier Ltd.
Fil:Jeronimo, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Solernó, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description This paper deals with the index reduction problem for the class of quasi-regular DAE systems. It is shown that any of these systems can be transformed to a generically equivalent first order DAE system consisting of a single purely algebraic (polynomial) equation plus an under-determined ODE (a differential Kronecker representation) in as many variables as the order of the input system. This can be done by means of a Kronecker-type algorithm with bounded complexity. © 2011 Elsevier Ltd.
publishDate 2011
dc.date.none.fl_str_mv 2011
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_07477171_v46_n10_p1114_DAlfonso
url http://hdl.handle.net/20.500.12110/paper_07477171_v46_n10_p1114_DAlfonso
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Symb. Comput. 2011;46(10):1114-1138
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618739404767232
score 13.070432