Point-spread-function engineering in MINFLUX: optimality of donut and half-moon excitation patterns

Autores
Liu, Yan; Dong, Jonathan; Maya, Juan Augusto; Balzarotti, Francisco; Unser, Michael
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Localization microscopy enables imaging with resolutions that surpass the conventional optical diffraction limit. Notably, the Maximally INFormative LUminescence eXcitation (MINFLUX) method achieves super-resolution by shaping the excitation point spread function (PSF) to minimize the required photon flux for a given precision. Various beam shapes have recently been proposed to improve localization efficiency, yet their optimality remains an open question. In this work, we deploy a numerical and theoretical framework to determine optimal excitation patterns for MINFLUX. Such a computational approach allows us to search for new beam patterns in a fast and low-cost fashion and to avoid time-consuming and expensive experimental explorations. We show that the conventional donut beam is a robust optimum when the excitation beams are all constrained to the same shape. Further, our PSF engineering framework yields two pairs of half-moon beams (orthogonal to each other), which can improve the theoretical localization precision by a factor of about two.
Fil: Liu, Yan. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Dong, Jonathan. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Maya, Juan Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Fil: Balzarotti, Francisco. Research Institute Of Molecular Pathology; Austria
Fil: Unser, Michael. École Polytechnique Fédérale de Lausanne; Suiza
Materia
point spread function
super-resolution microscopy
MINFLUX
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/257736

id CONICETDig_e0a5406b85ef94d64188667b81805355
oai_identifier_str oai:ri.conicet.gov.ar:11336/257736
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Point-spread-function engineering in MINFLUX: optimality of donut and half-moon excitation patternsLiu, YanDong, JonathanMaya, Juan AugustoBalzarotti, FranciscoUnser, Michaelpoint spread functionsuper-resolution microscopyMINFLUXhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Localization microscopy enables imaging with resolutions that surpass the conventional optical diffraction limit. Notably, the Maximally INFormative LUminescence eXcitation (MINFLUX) method achieves super-resolution by shaping the excitation point spread function (PSF) to minimize the required photon flux for a given precision. Various beam shapes have recently been proposed to improve localization efficiency, yet their optimality remains an open question. In this work, we deploy a numerical and theoretical framework to determine optimal excitation patterns for MINFLUX. Such a computational approach allows us to search for new beam patterns in a fast and low-cost fashion and to avoid time-consuming and expensive experimental explorations. We show that the conventional donut beam is a robust optimum when the excitation beams are all constrained to the same shape. Further, our PSF engineering framework yields two pairs of half-moon beams (orthogonal to each other), which can improve the theoretical localization precision by a factor of about two.Fil: Liu, Yan. École Polytechnique Fédérale de Lausanne; SuizaFil: Dong, Jonathan. École Polytechnique Fédérale de Lausanne; SuizaFil: Maya, Juan Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaFil: Balzarotti, Francisco. Research Institute Of Molecular Pathology; AustriaFil: Unser, Michael. École Polytechnique Fédérale de Lausanne; SuizaOptical Society of America2024-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/257736Liu, Yan; Dong, Jonathan; Maya, Juan Augusto; Balzarotti, Francisco; Unser, Michael; Point-spread-function engineering in MINFLUX: optimality of donut and half-moon excitation patterns; Optical Society of America; Optics Letters; 50; 1; 12-2024; 37-400146-9592CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://opg.optica.org/abstract.cfm?URI=ol-50-1-37info:eu-repo/semantics/altIdentifier/doi/10.1364/OL.543882info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:32:05Zoai:ri.conicet.gov.ar:11336/257736instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:32:06.265CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Point-spread-function engineering in MINFLUX: optimality of donut and half-moon excitation patterns
title Point-spread-function engineering in MINFLUX: optimality of donut and half-moon excitation patterns
spellingShingle Point-spread-function engineering in MINFLUX: optimality of donut and half-moon excitation patterns
Liu, Yan
point spread function
super-resolution microscopy
MINFLUX
title_short Point-spread-function engineering in MINFLUX: optimality of donut and half-moon excitation patterns
title_full Point-spread-function engineering in MINFLUX: optimality of donut and half-moon excitation patterns
title_fullStr Point-spread-function engineering in MINFLUX: optimality of donut and half-moon excitation patterns
title_full_unstemmed Point-spread-function engineering in MINFLUX: optimality of donut and half-moon excitation patterns
title_sort Point-spread-function engineering in MINFLUX: optimality of donut and half-moon excitation patterns
dc.creator.none.fl_str_mv Liu, Yan
Dong, Jonathan
Maya, Juan Augusto
Balzarotti, Francisco
Unser, Michael
author Liu, Yan
author_facet Liu, Yan
Dong, Jonathan
Maya, Juan Augusto
Balzarotti, Francisco
Unser, Michael
author_role author
author2 Dong, Jonathan
Maya, Juan Augusto
Balzarotti, Francisco
Unser, Michael
author2_role author
author
author
author
dc.subject.none.fl_str_mv point spread function
super-resolution microscopy
MINFLUX
topic point spread function
super-resolution microscopy
MINFLUX
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Localization microscopy enables imaging with resolutions that surpass the conventional optical diffraction limit. Notably, the Maximally INFormative LUminescence eXcitation (MINFLUX) method achieves super-resolution by shaping the excitation point spread function (PSF) to minimize the required photon flux for a given precision. Various beam shapes have recently been proposed to improve localization efficiency, yet their optimality remains an open question. In this work, we deploy a numerical and theoretical framework to determine optimal excitation patterns for MINFLUX. Such a computational approach allows us to search for new beam patterns in a fast and low-cost fashion and to avoid time-consuming and expensive experimental explorations. We show that the conventional donut beam is a robust optimum when the excitation beams are all constrained to the same shape. Further, our PSF engineering framework yields two pairs of half-moon beams (orthogonal to each other), which can improve the theoretical localization precision by a factor of about two.
Fil: Liu, Yan. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Dong, Jonathan. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Maya, Juan Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Fil: Balzarotti, Francisco. Research Institute Of Molecular Pathology; Austria
Fil: Unser, Michael. École Polytechnique Fédérale de Lausanne; Suiza
description Localization microscopy enables imaging with resolutions that surpass the conventional optical diffraction limit. Notably, the Maximally INFormative LUminescence eXcitation (MINFLUX) method achieves super-resolution by shaping the excitation point spread function (PSF) to minimize the required photon flux for a given precision. Various beam shapes have recently been proposed to improve localization efficiency, yet their optimality remains an open question. In this work, we deploy a numerical and theoretical framework to determine optimal excitation patterns for MINFLUX. Such a computational approach allows us to search for new beam patterns in a fast and low-cost fashion and to avoid time-consuming and expensive experimental explorations. We show that the conventional donut beam is a robust optimum when the excitation beams are all constrained to the same shape. Further, our PSF engineering framework yields two pairs of half-moon beams (orthogonal to each other), which can improve the theoretical localization precision by a factor of about two.
publishDate 2024
dc.date.none.fl_str_mv 2024-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/257736
Liu, Yan; Dong, Jonathan; Maya, Juan Augusto; Balzarotti, Francisco; Unser, Michael; Point-spread-function engineering in MINFLUX: optimality of donut and half-moon excitation patterns; Optical Society of America; Optics Letters; 50; 1; 12-2024; 37-40
0146-9592
CONICET Digital
CONICET
url http://hdl.handle.net/11336/257736
identifier_str_mv Liu, Yan; Dong, Jonathan; Maya, Juan Augusto; Balzarotti, Francisco; Unser, Michael; Point-spread-function engineering in MINFLUX: optimality of donut and half-moon excitation patterns; Optical Society of America; Optics Letters; 50; 1; 12-2024; 37-40
0146-9592
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://opg.optica.org/abstract.cfm?URI=ol-50-1-37
info:eu-repo/semantics/altIdentifier/doi/10.1364/OL.543882
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Optical Society of America
publisher.none.fl_str_mv Optical Society of America
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082808156520448
score 13.22299