Point-spread-function engineering in MINFLUX: optimality of donut and half-moon excitation patterns
- Autores
- Liu, Yan; Dong, Jonathan; Maya, Juan Augusto; Balzarotti, Francisco; Unser, Michael
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Localization microscopy enables imaging with resolutions that surpass the conventional optical diffraction limit. Notably, the Maximally INFormative LUminescence eXcitation (MINFLUX) method achieves super-resolution by shaping the excitation point spread function (PSF) to minimize the required photon flux for a given precision. Various beam shapes have recently been proposed to improve localization efficiency, yet their optimality remains an open question. In this work, we deploy a numerical and theoretical framework to determine optimal excitation patterns for MINFLUX. Such a computational approach allows us to search for new beam patterns in a fast and low-cost fashion and to avoid time-consuming and expensive experimental explorations. We show that the conventional donut beam is a robust optimum when the excitation beams are all constrained to the same shape. Further, our PSF engineering framework yields two pairs of half-moon beams (orthogonal to each other), which can improve the theoretical localization precision by a factor of about two.
Fil: Liu, Yan. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Dong, Jonathan. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Maya, Juan Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Fil: Balzarotti, Francisco. Research Institute Of Molecular Pathology; Austria
Fil: Unser, Michael. École Polytechnique Fédérale de Lausanne; Suiza - Materia
-
point spread function
super-resolution microscopy
MINFLUX - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/257736
Ver los metadatos del registro completo
id |
CONICETDig_e0a5406b85ef94d64188667b81805355 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/257736 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Point-spread-function engineering in MINFLUX: optimality of donut and half-moon excitation patternsLiu, YanDong, JonathanMaya, Juan AugustoBalzarotti, FranciscoUnser, Michaelpoint spread functionsuper-resolution microscopyMINFLUXhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Localization microscopy enables imaging with resolutions that surpass the conventional optical diffraction limit. Notably, the Maximally INFormative LUminescence eXcitation (MINFLUX) method achieves super-resolution by shaping the excitation point spread function (PSF) to minimize the required photon flux for a given precision. Various beam shapes have recently been proposed to improve localization efficiency, yet their optimality remains an open question. In this work, we deploy a numerical and theoretical framework to determine optimal excitation patterns for MINFLUX. Such a computational approach allows us to search for new beam patterns in a fast and low-cost fashion and to avoid time-consuming and expensive experimental explorations. We show that the conventional donut beam is a robust optimum when the excitation beams are all constrained to the same shape. Further, our PSF engineering framework yields two pairs of half-moon beams (orthogonal to each other), which can improve the theoretical localization precision by a factor of about two.Fil: Liu, Yan. École Polytechnique Fédérale de Lausanne; SuizaFil: Dong, Jonathan. École Polytechnique Fédérale de Lausanne; SuizaFil: Maya, Juan Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaFil: Balzarotti, Francisco. Research Institute Of Molecular Pathology; AustriaFil: Unser, Michael. École Polytechnique Fédérale de Lausanne; SuizaOptical Society of America2024-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/257736Liu, Yan; Dong, Jonathan; Maya, Juan Augusto; Balzarotti, Francisco; Unser, Michael; Point-spread-function engineering in MINFLUX: optimality of donut and half-moon excitation patterns; Optical Society of America; Optics Letters; 50; 1; 12-2024; 37-400146-9592CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://opg.optica.org/abstract.cfm?URI=ol-50-1-37info:eu-repo/semantics/altIdentifier/doi/10.1364/OL.543882info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:32:05Zoai:ri.conicet.gov.ar:11336/257736instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:32:06.265CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Point-spread-function engineering in MINFLUX: optimality of donut and half-moon excitation patterns |
title |
Point-spread-function engineering in MINFLUX: optimality of donut and half-moon excitation patterns |
spellingShingle |
Point-spread-function engineering in MINFLUX: optimality of donut and half-moon excitation patterns Liu, Yan point spread function super-resolution microscopy MINFLUX |
title_short |
Point-spread-function engineering in MINFLUX: optimality of donut and half-moon excitation patterns |
title_full |
Point-spread-function engineering in MINFLUX: optimality of donut and half-moon excitation patterns |
title_fullStr |
Point-spread-function engineering in MINFLUX: optimality of donut and half-moon excitation patterns |
title_full_unstemmed |
Point-spread-function engineering in MINFLUX: optimality of donut and half-moon excitation patterns |
title_sort |
Point-spread-function engineering in MINFLUX: optimality of donut and half-moon excitation patterns |
dc.creator.none.fl_str_mv |
Liu, Yan Dong, Jonathan Maya, Juan Augusto Balzarotti, Francisco Unser, Michael |
author |
Liu, Yan |
author_facet |
Liu, Yan Dong, Jonathan Maya, Juan Augusto Balzarotti, Francisco Unser, Michael |
author_role |
author |
author2 |
Dong, Jonathan Maya, Juan Augusto Balzarotti, Francisco Unser, Michael |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
point spread function super-resolution microscopy MINFLUX |
topic |
point spread function super-resolution microscopy MINFLUX |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Localization microscopy enables imaging with resolutions that surpass the conventional optical diffraction limit. Notably, the Maximally INFormative LUminescence eXcitation (MINFLUX) method achieves super-resolution by shaping the excitation point spread function (PSF) to minimize the required photon flux for a given precision. Various beam shapes have recently been proposed to improve localization efficiency, yet their optimality remains an open question. In this work, we deploy a numerical and theoretical framework to determine optimal excitation patterns for MINFLUX. Such a computational approach allows us to search for new beam patterns in a fast and low-cost fashion and to avoid time-consuming and expensive experimental explorations. We show that the conventional donut beam is a robust optimum when the excitation beams are all constrained to the same shape. Further, our PSF engineering framework yields two pairs of half-moon beams (orthogonal to each other), which can improve the theoretical localization precision by a factor of about two. Fil: Liu, Yan. École Polytechnique Fédérale de Lausanne; Suiza Fil: Dong, Jonathan. École Polytechnique Fédérale de Lausanne; Suiza Fil: Maya, Juan Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina Fil: Balzarotti, Francisco. Research Institute Of Molecular Pathology; Austria Fil: Unser, Michael. École Polytechnique Fédérale de Lausanne; Suiza |
description |
Localization microscopy enables imaging with resolutions that surpass the conventional optical diffraction limit. Notably, the Maximally INFormative LUminescence eXcitation (MINFLUX) method achieves super-resolution by shaping the excitation point spread function (PSF) to minimize the required photon flux for a given precision. Various beam shapes have recently been proposed to improve localization efficiency, yet their optimality remains an open question. In this work, we deploy a numerical and theoretical framework to determine optimal excitation patterns for MINFLUX. Such a computational approach allows us to search for new beam patterns in a fast and low-cost fashion and to avoid time-consuming and expensive experimental explorations. We show that the conventional donut beam is a robust optimum when the excitation beams are all constrained to the same shape. Further, our PSF engineering framework yields two pairs of half-moon beams (orthogonal to each other), which can improve the theoretical localization precision by a factor of about two. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/257736 Liu, Yan; Dong, Jonathan; Maya, Juan Augusto; Balzarotti, Francisco; Unser, Michael; Point-spread-function engineering in MINFLUX: optimality of donut and half-moon excitation patterns; Optical Society of America; Optics Letters; 50; 1; 12-2024; 37-40 0146-9592 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/257736 |
identifier_str_mv |
Liu, Yan; Dong, Jonathan; Maya, Juan Augusto; Balzarotti, Francisco; Unser, Michael; Point-spread-function engineering in MINFLUX: optimality of donut and half-moon excitation patterns; Optical Society of America; Optics Letters; 50; 1; 12-2024; 37-40 0146-9592 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://opg.optica.org/abstract.cfm?URI=ol-50-1-37 info:eu-repo/semantics/altIdentifier/doi/10.1364/OL.543882 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Optical Society of America |
publisher.none.fl_str_mv |
Optical Society of America |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082808156520448 |
score |
13.22299 |