Discrete SUPPOSe : A new, faster and accurate superresolution method for applications to fluorescence microscopy images
- Autores
- Martinez, Sandra Rita; Martinez, Oscar Eduardo
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this article we define Discrete SUPPOSe, a new and faster version of the single shot super resolution SUPPOSe (Superposition of virtual point sources) method. The SUPPOSe method for super-resolution of fluorescent microscope images relies in assuming that the sample source distribution can be modeled as a superposition of virtual point sources of equal intensities distributed in a continuous space, converting the ill posed deconvolution problem into a well posed one. In this work we present a faster new method that consists on discretizing the continuum problem, using a normalized covariance instead of a for the fitting function and hence transforming the convolution (the main computational time) into a multiplication, and modifying the mutation step of the genetic algorithm. We compare precision, accuracy, resolution and computation time. It is also shown that despite the spatial discretization in Discrete SUPPOSe similar figures for precision, accuracy and resolution are obtained. The algorithm was implemented in Matlab running on a CPU obtaining with a speed improvement factor of more than 15 for one image of 48 × 48 pixels. Processing images in parallel in a 16 cores CPU a 1Mpixel image is computed 240 times faster than the standard SUPPOSe in a 2600 core GPU. Experimental images were used to validate the method.
Fil: Martinez, Sandra Rita. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Martinez, Oscar Eduardo. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
IMAGE
RESOLUTION
SUPER-RESOLUTION
OPTIMIZATION
MICROSCOPY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/255186
Ver los metadatos del registro completo
id |
CONICETDig_32a0f1fe70b7755e35946fd4f931564d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/255186 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Discrete SUPPOSe : A new, faster and accurate superresolution method for applications to fluorescence microscopy imagesMartinez, Sandra RitaMartinez, Oscar EduardoIMAGERESOLUTIONSUPER-RESOLUTIONOPTIMIZATIONMICROSCOPYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this article we define Discrete SUPPOSe, a new and faster version of the single shot super resolution SUPPOSe (Superposition of virtual point sources) method. The SUPPOSe method for super-resolution of fluorescent microscope images relies in assuming that the sample source distribution can be modeled as a superposition of virtual point sources of equal intensities distributed in a continuous space, converting the ill posed deconvolution problem into a well posed one. In this work we present a faster new method that consists on discretizing the continuum problem, using a normalized covariance instead of a for the fitting function and hence transforming the convolution (the main computational time) into a multiplication, and modifying the mutation step of the genetic algorithm. We compare precision, accuracy, resolution and computation time. It is also shown that despite the spatial discretization in Discrete SUPPOSe similar figures for precision, accuracy and resolution are obtained. The algorithm was implemented in Matlab running on a CPU obtaining with a speed improvement factor of more than 15 for one image of 48 × 48 pixels. Processing images in parallel in a 16 cores CPU a 1Mpixel image is computed 240 times faster than the standard SUPPOSe in a 2600 core GPU. Experimental images were used to validate the method.Fil: Martinez, Sandra Rita. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Martinez, Oscar Eduardo. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2024-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/255186Martinez, Sandra Rita; Martinez, Oscar Eduardo; Discrete SUPPOSe : A new, faster and accurate superresolution method for applications to fluorescence microscopy images; Elsevier; Results in Optics; 16; 7-2024; 1-112666-9501CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.rio.2024.100715info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2666950124001123?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:42:57Zoai:ri.conicet.gov.ar:11336/255186instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:42:57.554CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Discrete SUPPOSe : A new, faster and accurate superresolution method for applications to fluorescence microscopy images |
title |
Discrete SUPPOSe : A new, faster and accurate superresolution method for applications to fluorescence microscopy images |
spellingShingle |
Discrete SUPPOSe : A new, faster and accurate superresolution method for applications to fluorescence microscopy images Martinez, Sandra Rita IMAGE RESOLUTION SUPER-RESOLUTION OPTIMIZATION MICROSCOPY |
title_short |
Discrete SUPPOSe : A new, faster and accurate superresolution method for applications to fluorescence microscopy images |
title_full |
Discrete SUPPOSe : A new, faster and accurate superresolution method for applications to fluorescence microscopy images |
title_fullStr |
Discrete SUPPOSe : A new, faster and accurate superresolution method for applications to fluorescence microscopy images |
title_full_unstemmed |
Discrete SUPPOSe : A new, faster and accurate superresolution method for applications to fluorescence microscopy images |
title_sort |
Discrete SUPPOSe : A new, faster and accurate superresolution method for applications to fluorescence microscopy images |
dc.creator.none.fl_str_mv |
Martinez, Sandra Rita Martinez, Oscar Eduardo |
author |
Martinez, Sandra Rita |
author_facet |
Martinez, Sandra Rita Martinez, Oscar Eduardo |
author_role |
author |
author2 |
Martinez, Oscar Eduardo |
author2_role |
author |
dc.subject.none.fl_str_mv |
IMAGE RESOLUTION SUPER-RESOLUTION OPTIMIZATION MICROSCOPY |
topic |
IMAGE RESOLUTION SUPER-RESOLUTION OPTIMIZATION MICROSCOPY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this article we define Discrete SUPPOSe, a new and faster version of the single shot super resolution SUPPOSe (Superposition of virtual point sources) method. The SUPPOSe method for super-resolution of fluorescent microscope images relies in assuming that the sample source distribution can be modeled as a superposition of virtual point sources of equal intensities distributed in a continuous space, converting the ill posed deconvolution problem into a well posed one. In this work we present a faster new method that consists on discretizing the continuum problem, using a normalized covariance instead of a for the fitting function and hence transforming the convolution (the main computational time) into a multiplication, and modifying the mutation step of the genetic algorithm. We compare precision, accuracy, resolution and computation time. It is also shown that despite the spatial discretization in Discrete SUPPOSe similar figures for precision, accuracy and resolution are obtained. The algorithm was implemented in Matlab running on a CPU obtaining with a speed improvement factor of more than 15 for one image of 48 × 48 pixels. Processing images in parallel in a 16 cores CPU a 1Mpixel image is computed 240 times faster than the standard SUPPOSe in a 2600 core GPU. Experimental images were used to validate the method. Fil: Martinez, Sandra Rita. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Martinez, Oscar Eduardo. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
In this article we define Discrete SUPPOSe, a new and faster version of the single shot super resolution SUPPOSe (Superposition of virtual point sources) method. The SUPPOSe method for super-resolution of fluorescent microscope images relies in assuming that the sample source distribution can be modeled as a superposition of virtual point sources of equal intensities distributed in a continuous space, converting the ill posed deconvolution problem into a well posed one. In this work we present a faster new method that consists on discretizing the continuum problem, using a normalized covariance instead of a for the fitting function and hence transforming the convolution (the main computational time) into a multiplication, and modifying the mutation step of the genetic algorithm. We compare precision, accuracy, resolution and computation time. It is also shown that despite the spatial discretization in Discrete SUPPOSe similar figures for precision, accuracy and resolution are obtained. The algorithm was implemented in Matlab running on a CPU obtaining with a speed improvement factor of more than 15 for one image of 48 × 48 pixels. Processing images in parallel in a 16 cores CPU a 1Mpixel image is computed 240 times faster than the standard SUPPOSe in a 2600 core GPU. Experimental images were used to validate the method. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/255186 Martinez, Sandra Rita; Martinez, Oscar Eduardo; Discrete SUPPOSe : A new, faster and accurate superresolution method for applications to fluorescence microscopy images; Elsevier; Results in Optics; 16; 7-2024; 1-11 2666-9501 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/255186 |
identifier_str_mv |
Martinez, Sandra Rita; Martinez, Oscar Eduardo; Discrete SUPPOSe : A new, faster and accurate superresolution method for applications to fluorescence microscopy images; Elsevier; Results in Optics; 16; 7-2024; 1-11 2666-9501 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.rio.2024.100715 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2666950124001123?via%3Dihub |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613351937671168 |
score |
13.070432 |