Plasmid prediction in Micrococcus bacterial strains

Autores
Kurth, Daniel German; Padilla Franzotti, Carla Luciana; Saracho, Hayde
Año de publicación
2021
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Plasmids are circular or linear extrachromosomal DNA molecules that replicate autonomously and occasionally provide their guests with bacterial extra genetic material important for their survival and adaptation. The sequencing of bacterial genomes has generated a vast wealth of data that can be processed by different computational tools to identify plasmid sequences. This would allow expanding the knowledge about plasmids and their diversity in most prokaryotic taxa. We tested this idea in a barely studied bacterial genus such as Micrococcus. These are environmental bacteria, and the best-known species is M. luteus, sometimes associated with skin and opportunistic infections. Other species show potential for biotechnological applications, as they can produce antibiotics, biofuels, enzymes and could be applied as biofertilizer or in bioremediation processes. Draftgenomes were obtained from sequencing reads of 20 strains of Micrococcus. The  combination of different methods on these genomes allowed us to detect the presence of sequences associated with plasmids in 17 of the selected strains. The predictionsare not complete plasmids, but rather a set of fragments. In these sequences, genes directly associated with plasmid functions (replication and segregation) were detected, as well as accessory genes related to resistance to toxic compounds, oxidative stress, and antibiotics. To test the novelty of these predictions, they were analyzed with the software Copla to identify plasmid taxonomic units (PTUs). Only one set was classified in a PTU containing a diverse set of plasmids that could be involved in horizontal gene transfer between different phyla. Thus, most of the predictions might represent novel plasmids. In addition, a bipartite bacterial network was constructed with the plasmid predictions and known as actinobacterial plasmids. These networks include two types of nodes: genomic nodes representing each plasmid or genetic unit, and protein nodes representing clusters of protein sequences encoded by the different plasmids. Our network included 833 actinobacterial plasmids, 17 predictions, and 112878 proteins. The network had poor connectivity, with most of the nodes consisting of single elements related to isolated plasmids. 80% of the nodes were hypothetical proteins and 69% included only one protein sequence. From the non-hypothetical proteins, 1438 were annotated as transposases, an abundant element in plasmids, and they formed the largest clusters. This suggests that most actinobacterial plasmids are unique and highlights the lack of knowledge on the biology and roles of these mobile genetic elements in Actinobacteria. Still, this represents a significant addition to the Micrococcus plasmid sequences pool and the first step in a study over the whole phylum.
Fil: Kurth, Daniel German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
Fil: Padilla Franzotti, Carla Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
Fil: Saracho, Hayde. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
LVII Reunión Anual SAIB y XVI Congreso Anual de la Asociación Civil de Microbiología General
Mendoza
Argentina
Sociedad Argentina de Investigaciones Bioquímicas
Sociedad Argentina de Microbiología General
Materia
PLASMID
MICROCOCCUS
NETWORK
DATABASE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/181139

id CONICETDig_e07dd9cc90d1bef157612413b052c6d0
oai_identifier_str oai:ri.conicet.gov.ar:11336/181139
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Plasmid prediction in Micrococcus bacterial strainsKurth, Daniel GermanPadilla Franzotti, Carla LucianaSaracho, HaydePLASMIDMICROCOCCUSNETWORKDATABASEhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Plasmids are circular or linear extrachromosomal DNA molecules that replicate autonomously and occasionally provide their guests with bacterial extra genetic material important for their survival and adaptation. The sequencing of bacterial genomes has generated a vast wealth of data that can be processed by different computational tools to identify plasmid sequences. This would allow expanding the knowledge about plasmids and their diversity in most prokaryotic taxa. We tested this idea in a barely studied bacterial genus such as Micrococcus. These are environmental bacteria, and the best-known species is M. luteus, sometimes associated with skin and opportunistic infections. Other species show potential for biotechnological applications, as they can produce antibiotics, biofuels, enzymes and could be applied as biofertilizer or in bioremediation processes. Draftgenomes were obtained from sequencing reads of 20 strains of Micrococcus. The  combination of different methods on these genomes allowed us to detect the presence of sequences associated with plasmids in 17 of the selected strains. The predictionsare not complete plasmids, but rather a set of fragments. In these sequences, genes directly associated with plasmid functions (replication and segregation) were detected, as well as accessory genes related to resistance to toxic compounds, oxidative stress, and antibiotics. To test the novelty of these predictions, they were analyzed with the software Copla to identify plasmid taxonomic units (PTUs). Only one set was classified in a PTU containing a diverse set of plasmids that could be involved in horizontal gene transfer between different phyla. Thus, most of the predictions might represent novel plasmids. In addition, a bipartite bacterial network was constructed with the plasmid predictions and known as actinobacterial plasmids. These networks include two types of nodes: genomic nodes representing each plasmid or genetic unit, and protein nodes representing clusters of protein sequences encoded by the different plasmids. Our network included 833 actinobacterial plasmids, 17 predictions, and 112878 proteins. The network had poor connectivity, with most of the nodes consisting of single elements related to isolated plasmids. 80% of the nodes were hypothetical proteins and 69% included only one protein sequence. From the non-hypothetical proteins, 1438 were annotated as transposases, an abundant element in plasmids, and they formed the largest clusters. This suggests that most actinobacterial plasmids are unique and highlights the lack of knowledge on the biology and roles of these mobile genetic elements in Actinobacteria. Still, this represents a significant addition to the Micrococcus plasmid sequences pool and the first step in a study over the whole phylum.Fil: Kurth, Daniel German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Padilla Franzotti, Carla Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Saracho, Hayde. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaLVII Reunión Anual SAIB y XVI Congreso Anual de la Asociación Civil de Microbiología GeneralMendozaArgentinaSociedad Argentina de Investigaciones BioquímicasSociedad Argentina de Microbiología GeneralTech Science Press2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectReuniónJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/181139Plasmid prediction in Micrococcus bacterial strains; LVII Reunión Anual SAIB y XVI Congreso Anual de la Asociación Civil de Microbiología General; Mendoza; Argentina; 2021; 1-70327-9545CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.samige.org.ar/admin/news/files/177-Biocell-Preprint-SAIB-SAMIGE-2021.pdfInternacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:23Zoai:ri.conicet.gov.ar:11336/181139instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:23.598CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Plasmid prediction in Micrococcus bacterial strains
title Plasmid prediction in Micrococcus bacterial strains
spellingShingle Plasmid prediction in Micrococcus bacterial strains
Kurth, Daniel German
PLASMID
MICROCOCCUS
NETWORK
DATABASE
title_short Plasmid prediction in Micrococcus bacterial strains
title_full Plasmid prediction in Micrococcus bacterial strains
title_fullStr Plasmid prediction in Micrococcus bacterial strains
title_full_unstemmed Plasmid prediction in Micrococcus bacterial strains
title_sort Plasmid prediction in Micrococcus bacterial strains
dc.creator.none.fl_str_mv Kurth, Daniel German
Padilla Franzotti, Carla Luciana
Saracho, Hayde
author Kurth, Daniel German
author_facet Kurth, Daniel German
Padilla Franzotti, Carla Luciana
Saracho, Hayde
author_role author
author2 Padilla Franzotti, Carla Luciana
Saracho, Hayde
author2_role author
author
dc.subject.none.fl_str_mv PLASMID
MICROCOCCUS
NETWORK
DATABASE
topic PLASMID
MICROCOCCUS
NETWORK
DATABASE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Plasmids are circular or linear extrachromosomal DNA molecules that replicate autonomously and occasionally provide their guests with bacterial extra genetic material important for their survival and adaptation. The sequencing of bacterial genomes has generated a vast wealth of data that can be processed by different computational tools to identify plasmid sequences. This would allow expanding the knowledge about plasmids and their diversity in most prokaryotic taxa. We tested this idea in a barely studied bacterial genus such as Micrococcus. These are environmental bacteria, and the best-known species is M. luteus, sometimes associated with skin and opportunistic infections. Other species show potential for biotechnological applications, as they can produce antibiotics, biofuels, enzymes and could be applied as biofertilizer or in bioremediation processes. Draftgenomes were obtained from sequencing reads of 20 strains of Micrococcus. The  combination of different methods on these genomes allowed us to detect the presence of sequences associated with plasmids in 17 of the selected strains. The predictionsare not complete plasmids, but rather a set of fragments. In these sequences, genes directly associated with plasmid functions (replication and segregation) were detected, as well as accessory genes related to resistance to toxic compounds, oxidative stress, and antibiotics. To test the novelty of these predictions, they were analyzed with the software Copla to identify plasmid taxonomic units (PTUs). Only one set was classified in a PTU containing a diverse set of plasmids that could be involved in horizontal gene transfer between different phyla. Thus, most of the predictions might represent novel plasmids. In addition, a bipartite bacterial network was constructed with the plasmid predictions and known as actinobacterial plasmids. These networks include two types of nodes: genomic nodes representing each plasmid or genetic unit, and protein nodes representing clusters of protein sequences encoded by the different plasmids. Our network included 833 actinobacterial plasmids, 17 predictions, and 112878 proteins. The network had poor connectivity, with most of the nodes consisting of single elements related to isolated plasmids. 80% of the nodes were hypothetical proteins and 69% included only one protein sequence. From the non-hypothetical proteins, 1438 were annotated as transposases, an abundant element in plasmids, and they formed the largest clusters. This suggests that most actinobacterial plasmids are unique and highlights the lack of knowledge on the biology and roles of these mobile genetic elements in Actinobacteria. Still, this represents a significant addition to the Micrococcus plasmid sequences pool and the first step in a study over the whole phylum.
Fil: Kurth, Daniel German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
Fil: Padilla Franzotti, Carla Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
Fil: Saracho, Hayde. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
LVII Reunión Anual SAIB y XVI Congreso Anual de la Asociación Civil de Microbiología General
Mendoza
Argentina
Sociedad Argentina de Investigaciones Bioquímicas
Sociedad Argentina de Microbiología General
description Plasmids are circular or linear extrachromosomal DNA molecules that replicate autonomously and occasionally provide their guests with bacterial extra genetic material important for their survival and adaptation. The sequencing of bacterial genomes has generated a vast wealth of data that can be processed by different computational tools to identify plasmid sequences. This would allow expanding the knowledge about plasmids and their diversity in most prokaryotic taxa. We tested this idea in a barely studied bacterial genus such as Micrococcus. These are environmental bacteria, and the best-known species is M. luteus, sometimes associated with skin and opportunistic infections. Other species show potential for biotechnological applications, as they can produce antibiotics, biofuels, enzymes and could be applied as biofertilizer or in bioremediation processes. Draftgenomes were obtained from sequencing reads of 20 strains of Micrococcus. The  combination of different methods on these genomes allowed us to detect the presence of sequences associated with plasmids in 17 of the selected strains. The predictionsare not complete plasmids, but rather a set of fragments. In these sequences, genes directly associated with plasmid functions (replication and segregation) were detected, as well as accessory genes related to resistance to toxic compounds, oxidative stress, and antibiotics. To test the novelty of these predictions, they were analyzed with the software Copla to identify plasmid taxonomic units (PTUs). Only one set was classified in a PTU containing a diverse set of plasmids that could be involved in horizontal gene transfer between different phyla. Thus, most of the predictions might represent novel plasmids. In addition, a bipartite bacterial network was constructed with the plasmid predictions and known as actinobacterial plasmids. These networks include two types of nodes: genomic nodes representing each plasmid or genetic unit, and protein nodes representing clusters of protein sequences encoded by the different plasmids. Our network included 833 actinobacterial plasmids, 17 predictions, and 112878 proteins. The network had poor connectivity, with most of the nodes consisting of single elements related to isolated plasmids. 80% of the nodes were hypothetical proteins and 69% included only one protein sequence. From the non-hypothetical proteins, 1438 were annotated as transposases, an abundant element in plasmids, and they formed the largest clusters. This suggests that most actinobacterial plasmids are unique and highlights the lack of knowledge on the biology and roles of these mobile genetic elements in Actinobacteria. Still, this represents a significant addition to the Micrococcus plasmid sequences pool and the first step in a study over the whole phylum.
publishDate 2021
dc.date.none.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Reunión
Journal
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/181139
Plasmid prediction in Micrococcus bacterial strains; LVII Reunión Anual SAIB y XVI Congreso Anual de la Asociación Civil de Microbiología General; Mendoza; Argentina; 2021; 1-7
0327-9545
CONICET Digital
CONICET
url http://hdl.handle.net/11336/181139
identifier_str_mv Plasmid prediction in Micrococcus bacterial strains; LVII Reunión Anual SAIB y XVI Congreso Anual de la Asociación Civil de Microbiología General; Mendoza; Argentina; 2021; 1-7
0327-9545
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.samige.org.ar/admin/news/files/177-Biocell-Preprint-SAIB-SAMIGE-2021.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.coverage.none.fl_str_mv Internacional
dc.publisher.none.fl_str_mv Tech Science Press
publisher.none.fl_str_mv Tech Science Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270042984546304
score 13.13397