Shimura correspondence for level p2 and the central values of L-series II
- Autores
- Pacetti, Ariel Martín; Tornaria, Gonzalo
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given a Hecke eigenform f of weight 2 and square-free level N, by the work of Kohnen, there is a unique weight 3/2 modular form of level 4N mapping to f under the Shimura correspondence. Furthermore, by the work of Waldspurger the Fourier coefficients of such a form are related to the quadratic twists of the form f. Gross gave a construction of the half integral weight form when N is prime, and such construction was later generalized to square-free levels. However, in the non-square free case, the situation is more complicated since the natural construction is vacuous. The problem being that there are too many special points so that there is cancellation while trying to encode the information as a linear combination of theta series. In this paper, we concentrate in the case of level p 2 , for p > 2 a prime number, and show how the set of special points can be split into subsets (indexed by bilateral ideals for an order of reduced discriminant p 2 ) which gives two weight 3/2 modular forms mapping to f under the Shimura correspondence. Moreover, the splitting has a geometric interpretation which allows to prove that the forms are indeed a linear combination of theta series associated to ternary quadratic forms. Once such interpretation is given, we extend the method of Gross-Zagier to the case where the level and the discriminant are not prime to each other to prove a Gross-type formula in this situation.
Fil: Pacetti, Ariel Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
Fil: Tornaria, Gonzalo. Universidad de la República; Uruguay - Materia
-
Shimura Correspondence
L-Series Special Values - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18802
Ver los metadatos del registro completo
id |
CONICETDig_dfedf673c60f14d8aa55f27e291da568 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18802 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Shimura correspondence for level p2 and the central values of L-series IIPacetti, Ariel MartínTornaria, GonzaloShimura CorrespondenceL-Series Special Valueshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given a Hecke eigenform f of weight 2 and square-free level N, by the work of Kohnen, there is a unique weight 3/2 modular form of level 4N mapping to f under the Shimura correspondence. Furthermore, by the work of Waldspurger the Fourier coefficients of such a form are related to the quadratic twists of the form f. Gross gave a construction of the half integral weight form when N is prime, and such construction was later generalized to square-free levels. However, in the non-square free case, the situation is more complicated since the natural construction is vacuous. The problem being that there are too many special points so that there is cancellation while trying to encode the information as a linear combination of theta series. In this paper, we concentrate in the case of level p 2 , for p > 2 a prime number, and show how the set of special points can be split into subsets (indexed by bilateral ideals for an order of reduced discriminant p 2 ) which gives two weight 3/2 modular forms mapping to f under the Shimura correspondence. Moreover, the splitting has a geometric interpretation which allows to prove that the forms are indeed a linear combination of theta series associated to ternary quadratic forms. Once such interpretation is given, we extend the method of Gross-Zagier to the case where the level and the discriminant are not prime to each other to prove a Gross-type formula in this situation.Fil: Pacetti, Ariel Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaFil: Tornaria, Gonzalo. Universidad de la República; UruguayWorld Scientific2014-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18802Pacetti, Ariel Martín; Tornaria, Gonzalo; Shimura correspondence for level p2 and the central values of L-series II; World Scientific; International Journal Of Number Theory; 10; 7; 11-2014; 1-411793-04211793-7310CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1142/S179304211450047Xinfo:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.1142/S179304211450047Xinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/math/0606578info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:27Zoai:ri.conicet.gov.ar:11336/18802instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:28.197CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Shimura correspondence for level p2 and the central values of L-series II |
title |
Shimura correspondence for level p2 and the central values of L-series II |
spellingShingle |
Shimura correspondence for level p2 and the central values of L-series II Pacetti, Ariel Martín Shimura Correspondence L-Series Special Values |
title_short |
Shimura correspondence for level p2 and the central values of L-series II |
title_full |
Shimura correspondence for level p2 and the central values of L-series II |
title_fullStr |
Shimura correspondence for level p2 and the central values of L-series II |
title_full_unstemmed |
Shimura correspondence for level p2 and the central values of L-series II |
title_sort |
Shimura correspondence for level p2 and the central values of L-series II |
dc.creator.none.fl_str_mv |
Pacetti, Ariel Martín Tornaria, Gonzalo |
author |
Pacetti, Ariel Martín |
author_facet |
Pacetti, Ariel Martín Tornaria, Gonzalo |
author_role |
author |
author2 |
Tornaria, Gonzalo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Shimura Correspondence L-Series Special Values |
topic |
Shimura Correspondence L-Series Special Values |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Given a Hecke eigenform f of weight 2 and square-free level N, by the work of Kohnen, there is a unique weight 3/2 modular form of level 4N mapping to f under the Shimura correspondence. Furthermore, by the work of Waldspurger the Fourier coefficients of such a form are related to the quadratic twists of the form f. Gross gave a construction of the half integral weight form when N is prime, and such construction was later generalized to square-free levels. However, in the non-square free case, the situation is more complicated since the natural construction is vacuous. The problem being that there are too many special points so that there is cancellation while trying to encode the information as a linear combination of theta series. In this paper, we concentrate in the case of level p 2 , for p > 2 a prime number, and show how the set of special points can be split into subsets (indexed by bilateral ideals for an order of reduced discriminant p 2 ) which gives two weight 3/2 modular forms mapping to f under the Shimura correspondence. Moreover, the splitting has a geometric interpretation which allows to prove that the forms are indeed a linear combination of theta series associated to ternary quadratic forms. Once such interpretation is given, we extend the method of Gross-Zagier to the case where the level and the discriminant are not prime to each other to prove a Gross-type formula in this situation. Fil: Pacetti, Ariel Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina Fil: Tornaria, Gonzalo. Universidad de la República; Uruguay |
description |
Given a Hecke eigenform f of weight 2 and square-free level N, by the work of Kohnen, there is a unique weight 3/2 modular form of level 4N mapping to f under the Shimura correspondence. Furthermore, by the work of Waldspurger the Fourier coefficients of such a form are related to the quadratic twists of the form f. Gross gave a construction of the half integral weight form when N is prime, and such construction was later generalized to square-free levels. However, in the non-square free case, the situation is more complicated since the natural construction is vacuous. The problem being that there are too many special points so that there is cancellation while trying to encode the information as a linear combination of theta series. In this paper, we concentrate in the case of level p 2 , for p > 2 a prime number, and show how the set of special points can be split into subsets (indexed by bilateral ideals for an order of reduced discriminant p 2 ) which gives two weight 3/2 modular forms mapping to f under the Shimura correspondence. Moreover, the splitting has a geometric interpretation which allows to prove that the forms are indeed a linear combination of theta series associated to ternary quadratic forms. Once such interpretation is given, we extend the method of Gross-Zagier to the case where the level and the discriminant are not prime to each other to prove a Gross-type formula in this situation. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18802 Pacetti, Ariel Martín; Tornaria, Gonzalo; Shimura correspondence for level p2 and the central values of L-series II; World Scientific; International Journal Of Number Theory; 10; 7; 11-2014; 1-41 1793-0421 1793-7310 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18802 |
identifier_str_mv |
Pacetti, Ariel Martín; Tornaria, Gonzalo; Shimura correspondence for level p2 and the central values of L-series II; World Scientific; International Journal Of Number Theory; 10; 7; 11-2014; 1-41 1793-0421 1793-7310 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1142/S179304211450047X info:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.1142/S179304211450047X info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/math/0606578 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific |
publisher.none.fl_str_mv |
World Scientific |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269403988623360 |
score |
13.13397 |