Shimura correspondence for level p2 and the central values of L-series II

Autores
Pacetti, Ariel Martín; Tornaria, Gonzalo
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Given a Hecke eigenform f of weight 2 and square-free level N, by the work of Kohnen, there is a unique weight 3/2 modular form of level 4N mapping to f under the Shimura correspondence. Furthermore, by the work of Waldspurger the Fourier coefficients of such a form are related to the quadratic twists of the form f. Gross gave a construction of the half integral weight form when N is prime, and such construction was later generalized to square-free levels. However, in the non-square free case, the situation is more complicated since the natural construction is vacuous. The problem being that there are too many special points so that there is cancellation while trying to encode the information as a linear combination of theta series. In this paper, we concentrate in the case of level p 2 , for p > 2 a prime number, and show how the set of special points can be split into subsets (indexed by bilateral ideals for an order of reduced discriminant p 2 ) which gives two weight 3/2 modular forms mapping to f under the Shimura correspondence. Moreover, the splitting has a geometric interpretation which allows to prove that the forms are indeed a linear combination of theta series associated to ternary quadratic forms. Once such interpretation is given, we extend the method of Gross-Zagier to the case where the level and the discriminant are not prime to each other to prove a Gross-type formula in this situation.
Fil: Pacetti, Ariel Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
Fil: Tornaria, Gonzalo. Universidad de la República; Uruguay
Materia
Shimura Correspondence
L-Series Special Values
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18802

id CONICETDig_dfedf673c60f14d8aa55f27e291da568
oai_identifier_str oai:ri.conicet.gov.ar:11336/18802
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Shimura correspondence for level p2 and the central values of L-series IIPacetti, Ariel MartínTornaria, GonzaloShimura CorrespondenceL-Series Special Valueshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given a Hecke eigenform f of weight 2 and square-free level N, by the work of Kohnen, there is a unique weight 3/2 modular form of level 4N mapping to f under the Shimura correspondence. Furthermore, by the work of Waldspurger the Fourier coefficients of such a form are related to the quadratic twists of the form f. Gross gave a construction of the half integral weight form when N is prime, and such construction was later generalized to square-free levels. However, in the non-square free case, the situation is more complicated since the natural construction is vacuous. The problem being that there are too many special points so that there is cancellation while trying to encode the information as a linear combination of theta series. In this paper, we concentrate in the case of level p 2 , for p > 2 a prime number, and show how the set of special points can be split into subsets (indexed by bilateral ideals for an order of reduced discriminant p 2 ) which gives two weight 3/2 modular forms mapping to f under the Shimura correspondence. Moreover, the splitting has a geometric interpretation which allows to prove that the forms are indeed a linear combination of theta series associated to ternary quadratic forms. Once such interpretation is given, we extend the method of Gross-Zagier to the case where the level and the discriminant are not prime to each other to prove a Gross-type formula in this situation.Fil: Pacetti, Ariel Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaFil: Tornaria, Gonzalo. Universidad de la República; UruguayWorld Scientific2014-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18802Pacetti, Ariel Martín; Tornaria, Gonzalo; Shimura correspondence for level p2 and the central values of L-series II; World Scientific; International Journal Of Number Theory; 10; 7; 11-2014; 1-411793-04211793-7310CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1142/S179304211450047Xinfo:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.1142/S179304211450047Xinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/math/0606578info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:27Zoai:ri.conicet.gov.ar:11336/18802instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:28.197CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Shimura correspondence for level p2 and the central values of L-series II
title Shimura correspondence for level p2 and the central values of L-series II
spellingShingle Shimura correspondence for level p2 and the central values of L-series II
Pacetti, Ariel Martín
Shimura Correspondence
L-Series Special Values
title_short Shimura correspondence for level p2 and the central values of L-series II
title_full Shimura correspondence for level p2 and the central values of L-series II
title_fullStr Shimura correspondence for level p2 and the central values of L-series II
title_full_unstemmed Shimura correspondence for level p2 and the central values of L-series II
title_sort Shimura correspondence for level p2 and the central values of L-series II
dc.creator.none.fl_str_mv Pacetti, Ariel Martín
Tornaria, Gonzalo
author Pacetti, Ariel Martín
author_facet Pacetti, Ariel Martín
Tornaria, Gonzalo
author_role author
author2 Tornaria, Gonzalo
author2_role author
dc.subject.none.fl_str_mv Shimura Correspondence
L-Series Special Values
topic Shimura Correspondence
L-Series Special Values
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Given a Hecke eigenform f of weight 2 and square-free level N, by the work of Kohnen, there is a unique weight 3/2 modular form of level 4N mapping to f under the Shimura correspondence. Furthermore, by the work of Waldspurger the Fourier coefficients of such a form are related to the quadratic twists of the form f. Gross gave a construction of the half integral weight form when N is prime, and such construction was later generalized to square-free levels. However, in the non-square free case, the situation is more complicated since the natural construction is vacuous. The problem being that there are too many special points so that there is cancellation while trying to encode the information as a linear combination of theta series. In this paper, we concentrate in the case of level p 2 , for p > 2 a prime number, and show how the set of special points can be split into subsets (indexed by bilateral ideals for an order of reduced discriminant p 2 ) which gives two weight 3/2 modular forms mapping to f under the Shimura correspondence. Moreover, the splitting has a geometric interpretation which allows to prove that the forms are indeed a linear combination of theta series associated to ternary quadratic forms. Once such interpretation is given, we extend the method of Gross-Zagier to the case where the level and the discriminant are not prime to each other to prove a Gross-type formula in this situation.
Fil: Pacetti, Ariel Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
Fil: Tornaria, Gonzalo. Universidad de la República; Uruguay
description Given a Hecke eigenform f of weight 2 and square-free level N, by the work of Kohnen, there is a unique weight 3/2 modular form of level 4N mapping to f under the Shimura correspondence. Furthermore, by the work of Waldspurger the Fourier coefficients of such a form are related to the quadratic twists of the form f. Gross gave a construction of the half integral weight form when N is prime, and such construction was later generalized to square-free levels. However, in the non-square free case, the situation is more complicated since the natural construction is vacuous. The problem being that there are too many special points so that there is cancellation while trying to encode the information as a linear combination of theta series. In this paper, we concentrate in the case of level p 2 , for p > 2 a prime number, and show how the set of special points can be split into subsets (indexed by bilateral ideals for an order of reduced discriminant p 2 ) which gives two weight 3/2 modular forms mapping to f under the Shimura correspondence. Moreover, the splitting has a geometric interpretation which allows to prove that the forms are indeed a linear combination of theta series associated to ternary quadratic forms. Once such interpretation is given, we extend the method of Gross-Zagier to the case where the level and the discriminant are not prime to each other to prove a Gross-type formula in this situation.
publishDate 2014
dc.date.none.fl_str_mv 2014-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18802
Pacetti, Ariel Martín; Tornaria, Gonzalo; Shimura correspondence for level p2 and the central values of L-series II; World Scientific; International Journal Of Number Theory; 10; 7; 11-2014; 1-41
1793-0421
1793-7310
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18802
identifier_str_mv Pacetti, Ariel Martín; Tornaria, Gonzalo; Shimura correspondence for level p2 and the central values of L-series II; World Scientific; International Journal Of Number Theory; 10; 7; 11-2014; 1-41
1793-0421
1793-7310
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1142/S179304211450047X
info:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.1142/S179304211450047X
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/math/0606578
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv World Scientific
publisher.none.fl_str_mv World Scientific
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269403988623360
score 13.13397