On the embedding problem for 2+s4 representations

Autores
Pacetti, Ariel Martín
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let 2+S4 denote the double cover of S4 corresponding to the element in H2(S4, Z/2Z) where transpositions lift to elements of order 2 and the product of two disjoint transpositions to elements of order 4. Given an elliptic curve E, let E[2] denote its 2-torsion points. Under some conditions on E elements in H1(GalQ, E[2])\{0} correspond to Galois extensions N of Q with Galois group (isomorphic to) S4. In this work we give an interpretation of the addition law on such fields, and prove that the obstruction for N having a Galois extension N˜ with Gal(N/˜ Q) 2+S4 gives a homomorphism s+ 4 : H1(GalQ, E[2]) → H2(GalQ, Z/2Z). As a corollary we can prove (if E has conductor divisible by few primes and high rank) the existence of 2-dimensional representations of the absolute Galois group of Q attached to E and use them in some examples to construct 3/2 modular forms mapping via the Shimura map to (the modular form of weight 2 attached to) E.
Fil: Pacetti, Ariel Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
Galois representations
Shimura correspondence
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/125780

id CONICETDig_93928c461c64571eef207531d7a707e9
oai_identifier_str oai:ri.conicet.gov.ar:11336/125780
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On the embedding problem for 2+s4 representationsPacetti, Ariel MartínGalois representationsShimura correspondencehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let 2+S4 denote the double cover of S4 corresponding to the element in H2(S4, Z/2Z) where transpositions lift to elements of order 2 and the product of two disjoint transpositions to elements of order 4. Given an elliptic curve E, let E[2] denote its 2-torsion points. Under some conditions on E elements in H1(GalQ, E[2])\{0} correspond to Galois extensions N of Q with Galois group (isomorphic to) S4. In this work we give an interpretation of the addition law on such fields, and prove that the obstruction for N having a Galois extension N˜ with Gal(N/˜ Q) 2+S4 gives a homomorphism s+ 4 : H1(GalQ, E[2]) → H2(GalQ, Z/2Z). As a corollary we can prove (if E has conductor divisible by few primes and high rank) the existence of 2-dimensional representations of the absolute Galois group of Q attached to E and use them in some examples to construct 3/2 modular forms mapping via the Shimura map to (the modular form of weight 2 attached to) E.Fil: Pacetti, Ariel Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaAmerican Mathematical Society2007-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/125780Pacetti, Ariel Martín; On the embedding problem for 2+s4 representations; American Mathematical Society; Mathematics of Computation; 74; 260; 12-2007; 2063-20750025-5718CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1090/S0025-5718-07-01940-0info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:12:22Zoai:ri.conicet.gov.ar:11336/125780instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:12:22.732CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On the embedding problem for 2+s4 representations
title On the embedding problem for 2+s4 representations
spellingShingle On the embedding problem for 2+s4 representations
Pacetti, Ariel Martín
Galois representations
Shimura correspondence
title_short On the embedding problem for 2+s4 representations
title_full On the embedding problem for 2+s4 representations
title_fullStr On the embedding problem for 2+s4 representations
title_full_unstemmed On the embedding problem for 2+s4 representations
title_sort On the embedding problem for 2+s4 representations
dc.creator.none.fl_str_mv Pacetti, Ariel Martín
author Pacetti, Ariel Martín
author_facet Pacetti, Ariel Martín
author_role author
dc.subject.none.fl_str_mv Galois representations
Shimura correspondence
topic Galois representations
Shimura correspondence
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let 2+S4 denote the double cover of S4 corresponding to the element in H2(S4, Z/2Z) where transpositions lift to elements of order 2 and the product of two disjoint transpositions to elements of order 4. Given an elliptic curve E, let E[2] denote its 2-torsion points. Under some conditions on E elements in H1(GalQ, E[2])\{0} correspond to Galois extensions N of Q with Galois group (isomorphic to) S4. In this work we give an interpretation of the addition law on such fields, and prove that the obstruction for N having a Galois extension N˜ with Gal(N/˜ Q) 2+S4 gives a homomorphism s+ 4 : H1(GalQ, E[2]) → H2(GalQ, Z/2Z). As a corollary we can prove (if E has conductor divisible by few primes and high rank) the existence of 2-dimensional representations of the absolute Galois group of Q attached to E and use them in some examples to construct 3/2 modular forms mapping via the Shimura map to (the modular form of weight 2 attached to) E.
Fil: Pacetti, Ariel Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description Let 2+S4 denote the double cover of S4 corresponding to the element in H2(S4, Z/2Z) where transpositions lift to elements of order 2 and the product of two disjoint transpositions to elements of order 4. Given an elliptic curve E, let E[2] denote its 2-torsion points. Under some conditions on E elements in H1(GalQ, E[2])\{0} correspond to Galois extensions N of Q with Galois group (isomorphic to) S4. In this work we give an interpretation of the addition law on such fields, and prove that the obstruction for N having a Galois extension N˜ with Gal(N/˜ Q) 2+S4 gives a homomorphism s+ 4 : H1(GalQ, E[2]) → H2(GalQ, Z/2Z). As a corollary we can prove (if E has conductor divisible by few primes and high rank) the existence of 2-dimensional representations of the absolute Galois group of Q attached to E and use them in some examples to construct 3/2 modular forms mapping via the Shimura map to (the modular form of weight 2 attached to) E.
publishDate 2007
dc.date.none.fl_str_mv 2007-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/125780
Pacetti, Ariel Martín; On the embedding problem for 2+s4 representations; American Mathematical Society; Mathematics of Computation; 74; 260; 12-2007; 2063-2075
0025-5718
CONICET Digital
CONICET
url http://hdl.handle.net/11336/125780
identifier_str_mv Pacetti, Ariel Martín; On the embedding problem for 2+s4 representations; American Mathematical Society; Mathematics of Computation; 74; 260; 12-2007; 2063-2075
0025-5718
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1090/S0025-5718-07-01940-0
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Mathematical Society
publisher.none.fl_str_mv American Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781516096471040
score 12.982451