A formula for the central value of certain Hecke L-functions
- Autores
- Pacetti, A.
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let N ≡ 1 mod 4 be the negative of a prime, K = ℚ(√N) and OK its ring of integers. Let D be a prime ideal in OK of prime norm congruent to 3 mod 4. Under these assumptions, there exists Hecke characters ψD of K with conductor (D) and infinite type (1, 0). Their L-series L (ψD, s) are associated to a CM elliptic curve A(N, D) defined over the Hilbert class field of K. We will prove a Waldspurger-type formula for L(ψD, s) of the form L(ψD, 1) = Ω∑[A],Ir (D, [A], I) m[A],I ([D]) where the sum is over class ideal representatives I of a maximal order in the quaternion algebra ramified at N and infinity and [A] are class group representatives of K. An application of this formula for the case N = -7 will allow us to prove the non-vanishing of a family of L-series of level 7 D over K. © 2005 Elsevier Inc. All rights reserved.
Fil:Pacetti, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Number Theory 2005;113(2):339-379
- Materia
- Hecke L-functions
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
.jpg)
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_0022314X_v113_n2_p339_Pacetti
Ver los metadatos del registro completo
| id |
BDUBAFCEN_5817d219c69b319d8f11d8ee9ecf876c |
|---|---|
| oai_identifier_str |
paperaa:paper_0022314X_v113_n2_p339_Pacetti |
| network_acronym_str |
BDUBAFCEN |
| repository_id_str |
1896 |
| network_name_str |
Biblioteca Digital (UBA-FCEN) |
| spelling |
A formula for the central value of certain Hecke L-functionsPacetti, A.Hecke L-functionsLet N ≡ 1 mod 4 be the negative of a prime, K = ℚ(√N) and OK its ring of integers. Let D be a prime ideal in OK of prime norm congruent to 3 mod 4. Under these assumptions, there exists Hecke characters ψD of K with conductor (D) and infinite type (1, 0). Their L-series L (ψD, s) are associated to a CM elliptic curve A(N, D) defined over the Hilbert class field of K. We will prove a Waldspurger-type formula for L(ψD, s) of the form L(ψD, 1) = Ω∑[A],Ir (D, [A], I) m[A],I ([D]) where the sum is over class ideal representatives I of a maximal order in the quaternion algebra ramified at N and infinity and [A] are class group representatives of K. An application of this formula for the case N = -7 will allow us to prove the non-vanishing of a family of L-series of level 7 D over K. © 2005 Elsevier Inc. All rights reserved.Fil:Pacetti, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2005info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0022314X_v113_n2_p339_PacettiJ. Number Theory 2005;113(2):339-379reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-23T11:18:35Zpaperaa:paper_0022314X_v113_n2_p339_PacettiInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-23 11:18:36.414Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
| dc.title.none.fl_str_mv |
A formula for the central value of certain Hecke L-functions |
| title |
A formula for the central value of certain Hecke L-functions |
| spellingShingle |
A formula for the central value of certain Hecke L-functions Pacetti, A. Hecke L-functions |
| title_short |
A formula for the central value of certain Hecke L-functions |
| title_full |
A formula for the central value of certain Hecke L-functions |
| title_fullStr |
A formula for the central value of certain Hecke L-functions |
| title_full_unstemmed |
A formula for the central value of certain Hecke L-functions |
| title_sort |
A formula for the central value of certain Hecke L-functions |
| dc.creator.none.fl_str_mv |
Pacetti, A. |
| author |
Pacetti, A. |
| author_facet |
Pacetti, A. |
| author_role |
author |
| dc.subject.none.fl_str_mv |
Hecke L-functions |
| topic |
Hecke L-functions |
| dc.description.none.fl_txt_mv |
Let N ≡ 1 mod 4 be the negative of a prime, K = ℚ(√N) and OK its ring of integers. Let D be a prime ideal in OK of prime norm congruent to 3 mod 4. Under these assumptions, there exists Hecke characters ψD of K with conductor (D) and infinite type (1, 0). Their L-series L (ψD, s) are associated to a CM elliptic curve A(N, D) defined over the Hilbert class field of K. We will prove a Waldspurger-type formula for L(ψD, s) of the form L(ψD, 1) = Ω∑[A],Ir (D, [A], I) m[A],I ([D]) where the sum is over class ideal representatives I of a maximal order in the quaternion algebra ramified at N and infinity and [A] are class group representatives of K. An application of this formula for the case N = -7 will allow us to prove the non-vanishing of a family of L-series of level 7 D over K. © 2005 Elsevier Inc. All rights reserved. Fil:Pacetti, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
| description |
Let N ≡ 1 mod 4 be the negative of a prime, K = ℚ(√N) and OK its ring of integers. Let D be a prime ideal in OK of prime norm congruent to 3 mod 4. Under these assumptions, there exists Hecke characters ψD of K with conductor (D) and infinite type (1, 0). Their L-series L (ψD, s) are associated to a CM elliptic curve A(N, D) defined over the Hilbert class field of K. We will prove a Waldspurger-type formula for L(ψD, s) of the form L(ψD, 1) = Ω∑[A],Ir (D, [A], I) m[A],I ([D]) where the sum is over class ideal representatives I of a maximal order in the quaternion algebra ramified at N and infinity and [A] are class group representatives of K. An application of this formula for the case N = -7 will allow us to prove the non-vanishing of a family of L-series of level 7 D over K. © 2005 Elsevier Inc. All rights reserved. |
| publishDate |
2005 |
| dc.date.none.fl_str_mv |
2005 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_0022314X_v113_n2_p339_Pacetti |
| url |
http://hdl.handle.net/20.500.12110/paper_0022314X_v113_n2_p339_Pacetti |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
J. Number Theory 2005;113(2):339-379 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
| reponame_str |
Biblioteca Digital (UBA-FCEN) |
| collection |
Biblioteca Digital (UBA-FCEN) |
| instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| instacron_str |
UBA-FCEN |
| institution |
UBA-FCEN |
| repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
| _version_ |
1846784882710151168 |
| score |
12.982451 |