A formula for the central value of certain Hecke L-functions

Autores
Pacetti, A.
Año de publicación
2005
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let N ≡ 1 mod 4 be the negative of a prime, K = ℚ(√N) and OK its ring of integers. Let D be a prime ideal in OK of prime norm congruent to 3 mod 4. Under these assumptions, there exists Hecke characters ψD of K with conductor (D) and infinite type (1, 0). Their L-series L (ψD, s) are associated to a CM elliptic curve A(N, D) defined over the Hilbert class field of K. We will prove a Waldspurger-type formula for L(ψD, s) of the form L(ψD, 1) = Ω∑[A],Ir (D, [A], I) m[A],I ([D]) where the sum is over class ideal representatives I of a maximal order in the quaternion algebra ramified at N and infinity and [A] are class group representatives of K. An application of this formula for the case N = -7 will allow us to prove the non-vanishing of a family of L-series of level 7 D over K. © 2005 Elsevier Inc. All rights reserved.
Fil:Pacetti, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Number Theory 2005;113(2):339-379
Materia
Hecke L-functions
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_0022314X_v113_n2_p339_Pacetti

id BDUBAFCEN_5817d219c69b319d8f11d8ee9ecf876c
oai_identifier_str paperaa:paper_0022314X_v113_n2_p339_Pacetti
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling A formula for the central value of certain Hecke L-functionsPacetti, A.Hecke L-functionsLet N ≡ 1 mod 4 be the negative of a prime, K = ℚ(√N) and OK its ring of integers. Let D be a prime ideal in OK of prime norm congruent to 3 mod 4. Under these assumptions, there exists Hecke characters ψD of K with conductor (D) and infinite type (1, 0). Their L-series L (ψD, s) are associated to a CM elliptic curve A(N, D) defined over the Hilbert class field of K. We will prove a Waldspurger-type formula for L(ψD, s) of the form L(ψD, 1) = Ω∑[A],Ir (D, [A], I) m[A],I ([D]) where the sum is over class ideal representatives I of a maximal order in the quaternion algebra ramified at N and infinity and [A] are class group representatives of K. An application of this formula for the case N = -7 will allow us to prove the non-vanishing of a family of L-series of level 7 D over K. © 2005 Elsevier Inc. All rights reserved.Fil:Pacetti, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2005info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0022314X_v113_n2_p339_PacettiJ. Number Theory 2005;113(2):339-379reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-23T11:18:35Zpaperaa:paper_0022314X_v113_n2_p339_PacettiInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-23 11:18:36.414Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv A formula for the central value of certain Hecke L-functions
title A formula for the central value of certain Hecke L-functions
spellingShingle A formula for the central value of certain Hecke L-functions
Pacetti, A.
Hecke L-functions
title_short A formula for the central value of certain Hecke L-functions
title_full A formula for the central value of certain Hecke L-functions
title_fullStr A formula for the central value of certain Hecke L-functions
title_full_unstemmed A formula for the central value of certain Hecke L-functions
title_sort A formula for the central value of certain Hecke L-functions
dc.creator.none.fl_str_mv Pacetti, A.
author Pacetti, A.
author_facet Pacetti, A.
author_role author
dc.subject.none.fl_str_mv Hecke L-functions
topic Hecke L-functions
dc.description.none.fl_txt_mv Let N ≡ 1 mod 4 be the negative of a prime, K = ℚ(√N) and OK its ring of integers. Let D be a prime ideal in OK of prime norm congruent to 3 mod 4. Under these assumptions, there exists Hecke characters ψD of K with conductor (D) and infinite type (1, 0). Their L-series L (ψD, s) are associated to a CM elliptic curve A(N, D) defined over the Hilbert class field of K. We will prove a Waldspurger-type formula for L(ψD, s) of the form L(ψD, 1) = Ω∑[A],Ir (D, [A], I) m[A],I ([D]) where the sum is over class ideal representatives I of a maximal order in the quaternion algebra ramified at N and infinity and [A] are class group representatives of K. An application of this formula for the case N = -7 will allow us to prove the non-vanishing of a family of L-series of level 7 D over K. © 2005 Elsevier Inc. All rights reserved.
Fil:Pacetti, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description Let N ≡ 1 mod 4 be the negative of a prime, K = ℚ(√N) and OK its ring of integers. Let D be a prime ideal in OK of prime norm congruent to 3 mod 4. Under these assumptions, there exists Hecke characters ψD of K with conductor (D) and infinite type (1, 0). Their L-series L (ψD, s) are associated to a CM elliptic curve A(N, D) defined over the Hilbert class field of K. We will prove a Waldspurger-type formula for L(ψD, s) of the form L(ψD, 1) = Ω∑[A],Ir (D, [A], I) m[A],I ([D]) where the sum is over class ideal representatives I of a maximal order in the quaternion algebra ramified at N and infinity and [A] are class group representatives of K. An application of this formula for the case N = -7 will allow us to prove the non-vanishing of a family of L-series of level 7 D over K. © 2005 Elsevier Inc. All rights reserved.
publishDate 2005
dc.date.none.fl_str_mv 2005
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_0022314X_v113_n2_p339_Pacetti
url http://hdl.handle.net/20.500.12110/paper_0022314X_v113_n2_p339_Pacetti
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Number Theory 2005;113(2):339-379
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1846784882710151168
score 12.982451