A Game Theoretic Model of Wealth Distribution

Autores
Pinasco, Juan Pablo; Rodriguez Cartabia, Mauro; Saintier, Nicolas Bernard Claude
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work, we consider an agent-based model in order to study the wealth distribution problem where the interchange is determined with a symmetric zero-sum game. Simultaneously, the agents update their way of play trying to learn the optimal one. Here, the agents use mixed strategies. We study this model using both simulations and theoretical tools. We derive the equations for the learning mechanism, and we show that the mean strategy of the population satisfies an equation close to the classical replicator equation. Concerning the wealth distribution, there are two interesting situations depending on the equilibrium of the game. For pure strategies equilibria, the wealth distribution is fixed after some transient time, and those players which initially were close to the optimal strategy are richer. When the game has an equilibrium in mixed strategies, the stationary wealth distribution is close to a Gamma distribution with variance depending on the coefficients of the game matrix. We compute theoretically their second moment in this case.
Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Rodriguez Cartabia, Mauro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Saintier, Nicolas Bernard Claude. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
AGENT-BASED MODELS
EVOLUTIONARY GAMES
WEALTH DISTRIBUTION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/88970

id CONICETDig_de62316cdb03de725c1c7b1e4d6c0f40
oai_identifier_str oai:ri.conicet.gov.ar:11336/88970
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A Game Theoretic Model of Wealth DistributionPinasco, Juan PabloRodriguez Cartabia, MauroSaintier, Nicolas Bernard ClaudeAGENT-BASED MODELSEVOLUTIONARY GAMESWEALTH DISTRIBUTIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work, we consider an agent-based model in order to study the wealth distribution problem where the interchange is determined with a symmetric zero-sum game. Simultaneously, the agents update their way of play trying to learn the optimal one. Here, the agents use mixed strategies. We study this model using both simulations and theoretical tools. We derive the equations for the learning mechanism, and we show that the mean strategy of the population satisfies an equation close to the classical replicator equation. Concerning the wealth distribution, there are two interesting situations depending on the equilibrium of the game. For pure strategies equilibria, the wealth distribution is fixed after some transient time, and those players which initially were close to the optimal strategy are richer. When the game has an equilibrium in mixed strategies, the stationary wealth distribution is close to a Gamma distribution with variance depending on the coefficients of the game matrix. We compute theoretically their second moment in this case.Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Rodriguez Cartabia, Mauro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Saintier, Nicolas Bernard Claude. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaSpringer2018-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88970Pinasco, Juan Pablo; Rodriguez Cartabia, Mauro; Saintier, Nicolas Bernard Claude; A Game Theoretic Model of Wealth Distribution; Springer; Dynamic Games and Applications; 8; 4; 12-2018; 874-8902153-0793CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s13235-018-0240-3info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1709.03392info:eu-repo/semantics/altIdentifier/doi/10.1007/s13235-018-0240-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:35Zoai:ri.conicet.gov.ar:11336/88970instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:36.115CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A Game Theoretic Model of Wealth Distribution
title A Game Theoretic Model of Wealth Distribution
spellingShingle A Game Theoretic Model of Wealth Distribution
Pinasco, Juan Pablo
AGENT-BASED MODELS
EVOLUTIONARY GAMES
WEALTH DISTRIBUTION
title_short A Game Theoretic Model of Wealth Distribution
title_full A Game Theoretic Model of Wealth Distribution
title_fullStr A Game Theoretic Model of Wealth Distribution
title_full_unstemmed A Game Theoretic Model of Wealth Distribution
title_sort A Game Theoretic Model of Wealth Distribution
dc.creator.none.fl_str_mv Pinasco, Juan Pablo
Rodriguez Cartabia, Mauro
Saintier, Nicolas Bernard Claude
author Pinasco, Juan Pablo
author_facet Pinasco, Juan Pablo
Rodriguez Cartabia, Mauro
Saintier, Nicolas Bernard Claude
author_role author
author2 Rodriguez Cartabia, Mauro
Saintier, Nicolas Bernard Claude
author2_role author
author
dc.subject.none.fl_str_mv AGENT-BASED MODELS
EVOLUTIONARY GAMES
WEALTH DISTRIBUTION
topic AGENT-BASED MODELS
EVOLUTIONARY GAMES
WEALTH DISTRIBUTION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this work, we consider an agent-based model in order to study the wealth distribution problem where the interchange is determined with a symmetric zero-sum game. Simultaneously, the agents update their way of play trying to learn the optimal one. Here, the agents use mixed strategies. We study this model using both simulations and theoretical tools. We derive the equations for the learning mechanism, and we show that the mean strategy of the population satisfies an equation close to the classical replicator equation. Concerning the wealth distribution, there are two interesting situations depending on the equilibrium of the game. For pure strategies equilibria, the wealth distribution is fixed after some transient time, and those players which initially were close to the optimal strategy are richer. When the game has an equilibrium in mixed strategies, the stationary wealth distribution is close to a Gamma distribution with variance depending on the coefficients of the game matrix. We compute theoretically their second moment in this case.
Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Rodriguez Cartabia, Mauro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Saintier, Nicolas Bernard Claude. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description In this work, we consider an agent-based model in order to study the wealth distribution problem where the interchange is determined with a symmetric zero-sum game. Simultaneously, the agents update their way of play trying to learn the optimal one. Here, the agents use mixed strategies. We study this model using both simulations and theoretical tools. We derive the equations for the learning mechanism, and we show that the mean strategy of the population satisfies an equation close to the classical replicator equation. Concerning the wealth distribution, there are two interesting situations depending on the equilibrium of the game. For pure strategies equilibria, the wealth distribution is fixed after some transient time, and those players which initially were close to the optimal strategy are richer. When the game has an equilibrium in mixed strategies, the stationary wealth distribution is close to a Gamma distribution with variance depending on the coefficients of the game matrix. We compute theoretically their second moment in this case.
publishDate 2018
dc.date.none.fl_str_mv 2018-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/88970
Pinasco, Juan Pablo; Rodriguez Cartabia, Mauro; Saintier, Nicolas Bernard Claude; A Game Theoretic Model of Wealth Distribution; Springer; Dynamic Games and Applications; 8; 4; 12-2018; 874-890
2153-0793
CONICET Digital
CONICET
url http://hdl.handle.net/11336/88970
identifier_str_mv Pinasco, Juan Pablo; Rodriguez Cartabia, Mauro; Saintier, Nicolas Bernard Claude; A Game Theoretic Model of Wealth Distribution; Springer; Dynamic Games and Applications; 8; 4; 12-2018; 874-890
2153-0793
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s13235-018-0240-3
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1709.03392
info:eu-repo/semantics/altIdentifier/doi/10.1007/s13235-018-0240-3
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268612084105216
score 13.13397