A Game Theoretic Model of Wealth Distribution
- Autores
- Pinasco, Juan Pablo; Rodriguez Cartabia, Mauro; Saintier, Nicolas Bernard Claude
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work, we consider an agent-based model in order to study the wealth distribution problem where the interchange is determined with a symmetric zero-sum game. Simultaneously, the agents update their way of play trying to learn the optimal one. Here, the agents use mixed strategies. We study this model using both simulations and theoretical tools. We derive the equations for the learning mechanism, and we show that the mean strategy of the population satisfies an equation close to the classical replicator equation. Concerning the wealth distribution, there are two interesting situations depending on the equilibrium of the game. For pure strategies equilibria, the wealth distribution is fixed after some transient time, and those players which initially were close to the optimal strategy are richer. When the game has an equilibrium in mixed strategies, the stationary wealth distribution is close to a Gamma distribution with variance depending on the coefficients of the game matrix. We compute theoretically their second moment in this case.
Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Rodriguez Cartabia, Mauro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Saintier, Nicolas Bernard Claude. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
AGENT-BASED MODELS
EVOLUTIONARY GAMES
WEALTH DISTRIBUTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/88970
Ver los metadatos del registro completo
id |
CONICETDig_de62316cdb03de725c1c7b1e4d6c0f40 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/88970 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Game Theoretic Model of Wealth DistributionPinasco, Juan PabloRodriguez Cartabia, MauroSaintier, Nicolas Bernard ClaudeAGENT-BASED MODELSEVOLUTIONARY GAMESWEALTH DISTRIBUTIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work, we consider an agent-based model in order to study the wealth distribution problem where the interchange is determined with a symmetric zero-sum game. Simultaneously, the agents update their way of play trying to learn the optimal one. Here, the agents use mixed strategies. We study this model using both simulations and theoretical tools. We derive the equations for the learning mechanism, and we show that the mean strategy of the population satisfies an equation close to the classical replicator equation. Concerning the wealth distribution, there are two interesting situations depending on the equilibrium of the game. For pure strategies equilibria, the wealth distribution is fixed after some transient time, and those players which initially were close to the optimal strategy are richer. When the game has an equilibrium in mixed strategies, the stationary wealth distribution is close to a Gamma distribution with variance depending on the coefficients of the game matrix. We compute theoretically their second moment in this case.Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Rodriguez Cartabia, Mauro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Saintier, Nicolas Bernard Claude. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaSpringer2018-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88970Pinasco, Juan Pablo; Rodriguez Cartabia, Mauro; Saintier, Nicolas Bernard Claude; A Game Theoretic Model of Wealth Distribution; Springer; Dynamic Games and Applications; 8; 4; 12-2018; 874-8902153-0793CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s13235-018-0240-3info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1709.03392info:eu-repo/semantics/altIdentifier/doi/10.1007/s13235-018-0240-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:35Zoai:ri.conicet.gov.ar:11336/88970instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:36.115CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Game Theoretic Model of Wealth Distribution |
title |
A Game Theoretic Model of Wealth Distribution |
spellingShingle |
A Game Theoretic Model of Wealth Distribution Pinasco, Juan Pablo AGENT-BASED MODELS EVOLUTIONARY GAMES WEALTH DISTRIBUTION |
title_short |
A Game Theoretic Model of Wealth Distribution |
title_full |
A Game Theoretic Model of Wealth Distribution |
title_fullStr |
A Game Theoretic Model of Wealth Distribution |
title_full_unstemmed |
A Game Theoretic Model of Wealth Distribution |
title_sort |
A Game Theoretic Model of Wealth Distribution |
dc.creator.none.fl_str_mv |
Pinasco, Juan Pablo Rodriguez Cartabia, Mauro Saintier, Nicolas Bernard Claude |
author |
Pinasco, Juan Pablo |
author_facet |
Pinasco, Juan Pablo Rodriguez Cartabia, Mauro Saintier, Nicolas Bernard Claude |
author_role |
author |
author2 |
Rodriguez Cartabia, Mauro Saintier, Nicolas Bernard Claude |
author2_role |
author author |
dc.subject.none.fl_str_mv |
AGENT-BASED MODELS EVOLUTIONARY GAMES WEALTH DISTRIBUTION |
topic |
AGENT-BASED MODELS EVOLUTIONARY GAMES WEALTH DISTRIBUTION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this work, we consider an agent-based model in order to study the wealth distribution problem where the interchange is determined with a symmetric zero-sum game. Simultaneously, the agents update their way of play trying to learn the optimal one. Here, the agents use mixed strategies. We study this model using both simulations and theoretical tools. We derive the equations for the learning mechanism, and we show that the mean strategy of the population satisfies an equation close to the classical replicator equation. Concerning the wealth distribution, there are two interesting situations depending on the equilibrium of the game. For pure strategies equilibria, the wealth distribution is fixed after some transient time, and those players which initially were close to the optimal strategy are richer. When the game has an equilibrium in mixed strategies, the stationary wealth distribution is close to a Gamma distribution with variance depending on the coefficients of the game matrix. We compute theoretically their second moment in this case. Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Rodriguez Cartabia, Mauro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Saintier, Nicolas Bernard Claude. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
In this work, we consider an agent-based model in order to study the wealth distribution problem where the interchange is determined with a symmetric zero-sum game. Simultaneously, the agents update their way of play trying to learn the optimal one. Here, the agents use mixed strategies. We study this model using both simulations and theoretical tools. We derive the equations for the learning mechanism, and we show that the mean strategy of the population satisfies an equation close to the classical replicator equation. Concerning the wealth distribution, there are two interesting situations depending on the equilibrium of the game. For pure strategies equilibria, the wealth distribution is fixed after some transient time, and those players which initially were close to the optimal strategy are richer. When the game has an equilibrium in mixed strategies, the stationary wealth distribution is close to a Gamma distribution with variance depending on the coefficients of the game matrix. We compute theoretically their second moment in this case. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/88970 Pinasco, Juan Pablo; Rodriguez Cartabia, Mauro; Saintier, Nicolas Bernard Claude; A Game Theoretic Model of Wealth Distribution; Springer; Dynamic Games and Applications; 8; 4; 12-2018; 874-890 2153-0793 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/88970 |
identifier_str_mv |
Pinasco, Juan Pablo; Rodriguez Cartabia, Mauro; Saintier, Nicolas Bernard Claude; A Game Theoretic Model of Wealth Distribution; Springer; Dynamic Games and Applications; 8; 4; 12-2018; 874-890 2153-0793 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s13235-018-0240-3 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1709.03392 info:eu-repo/semantics/altIdentifier/doi/10.1007/s13235-018-0240-3 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268612084105216 |
score |
13.13397 |