Random multi-player games
- Autores
- Kontorovsky, Natalia Lucía; Pinasco, Juan Pablo; Vazquez, Federico
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The study of evolutionary games with pairwise local interactions has been of interest to many different disciplines. Also, local interactions with multiple opponents had been considered, although always for a fixed amount of players. In many situations, however, interactions between different numbers of players in each round could take place, and this case cannot be reduced to pairwise interactions. In this work, we formalize and generalize the definition of evolutionary stable strategy (ESS) to be able to include a scenario in which the game is played by two players with probability p and by three players with the complementary probability 1-p. We show the existence of equilibria in pure and mixed strategies depending on the probability p, on a concrete example of the duel-truel game. We find a range of p values for which the game has a mixed equilibrium and the proportion of players in each strategy depends on the particular value of p. We prove that each of these mixed equilibrium points is ESS. A more realistic way to study this dynamics with high-order interactions is to look at how it evolves in complex networks. We introduce and study an agent-based model on a network with a fixed number of nodes, which evolves as the replicator equation predicts. By studying the dynamics of this model on random networks, we find that the phase transitions between the pure and mixed equilibria depend on probability p and also on the mean degree of the network. We derive mean-field and pair approximation equations that give results in good agreement with simulations on different networks.
Fil: Kontorovsky, Natalia Lucía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina
Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Vazquez, Federico. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina - Materia
-
game theory
evolutionary
multiplayer
random - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/203611
Ver los metadatos del registro completo
id |
CONICETDig_f3ac254901fd985e6b7331d295bb2164 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/203611 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Random multi-player gamesKontorovsky, Natalia LucíaPinasco, Juan PabloVazquez, Federicogame theoryevolutionarymultiplayerrandomhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The study of evolutionary games with pairwise local interactions has been of interest to many different disciplines. Also, local interactions with multiple opponents had been considered, although always for a fixed amount of players. In many situations, however, interactions between different numbers of players in each round could take place, and this case cannot be reduced to pairwise interactions. In this work, we formalize and generalize the definition of evolutionary stable strategy (ESS) to be able to include a scenario in which the game is played by two players with probability p and by three players with the complementary probability 1-p. We show the existence of equilibria in pure and mixed strategies depending on the probability p, on a concrete example of the duel-truel game. We find a range of p values for which the game has a mixed equilibrium and the proportion of players in each strategy depends on the particular value of p. We prove that each of these mixed equilibrium points is ESS. A more realistic way to study this dynamics with high-order interactions is to look at how it evolves in complex networks. We introduce and study an agent-based model on a network with a fixed number of nodes, which evolves as the replicator equation predicts. By studying the dynamics of this model on random networks, we find that the phase transitions between the pure and mixed equilibria depend on probability p and also on the mean degree of the network. We derive mean-field and pair approximation equations that give results in good agreement with simulations on different networks.Fil: Kontorovsky, Natalia Lucía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; ArgentinaFil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Vazquez, Federico. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; ArgentinaAmerican Institute of Physics2022-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/203611Kontorovsky, Natalia Lucía; Pinasco, Juan Pablo; Vazquez, Federico; Random multi-player games; American Institute of Physics; Chaos; 32; 3; 3-2022; 1-141054-15001089-7682CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/aip/cha/article/32/3/033128/2835766/Random-multi-player-gamesinfo:eu-repo/semantics/altIdentifier/doi/10.1063/5.0080137info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:46:11Zoai:ri.conicet.gov.ar:11336/203611instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:46:11.884CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Random multi-player games |
title |
Random multi-player games |
spellingShingle |
Random multi-player games Kontorovsky, Natalia Lucía game theory evolutionary multiplayer random |
title_short |
Random multi-player games |
title_full |
Random multi-player games |
title_fullStr |
Random multi-player games |
title_full_unstemmed |
Random multi-player games |
title_sort |
Random multi-player games |
dc.creator.none.fl_str_mv |
Kontorovsky, Natalia Lucía Pinasco, Juan Pablo Vazquez, Federico |
author |
Kontorovsky, Natalia Lucía |
author_facet |
Kontorovsky, Natalia Lucía Pinasco, Juan Pablo Vazquez, Federico |
author_role |
author |
author2 |
Pinasco, Juan Pablo Vazquez, Federico |
author2_role |
author author |
dc.subject.none.fl_str_mv |
game theory evolutionary multiplayer random |
topic |
game theory evolutionary multiplayer random |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The study of evolutionary games with pairwise local interactions has been of interest to many different disciplines. Also, local interactions with multiple opponents had been considered, although always for a fixed amount of players. In many situations, however, interactions between different numbers of players in each round could take place, and this case cannot be reduced to pairwise interactions. In this work, we formalize and generalize the definition of evolutionary stable strategy (ESS) to be able to include a scenario in which the game is played by two players with probability p and by three players with the complementary probability 1-p. We show the existence of equilibria in pure and mixed strategies depending on the probability p, on a concrete example of the duel-truel game. We find a range of p values for which the game has a mixed equilibrium and the proportion of players in each strategy depends on the particular value of p. We prove that each of these mixed equilibrium points is ESS. A more realistic way to study this dynamics with high-order interactions is to look at how it evolves in complex networks. We introduce and study an agent-based model on a network with a fixed number of nodes, which evolves as the replicator equation predicts. By studying the dynamics of this model on random networks, we find that the phase transitions between the pure and mixed equilibria depend on probability p and also on the mean degree of the network. We derive mean-field and pair approximation equations that give results in good agreement with simulations on different networks. Fil: Kontorovsky, Natalia Lucía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Vazquez, Federico. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina |
description |
The study of evolutionary games with pairwise local interactions has been of interest to many different disciplines. Also, local interactions with multiple opponents had been considered, although always for a fixed amount of players. In many situations, however, interactions between different numbers of players in each round could take place, and this case cannot be reduced to pairwise interactions. In this work, we formalize and generalize the definition of evolutionary stable strategy (ESS) to be able to include a scenario in which the game is played by two players with probability p and by three players with the complementary probability 1-p. We show the existence of equilibria in pure and mixed strategies depending on the probability p, on a concrete example of the duel-truel game. We find a range of p values for which the game has a mixed equilibrium and the proportion of players in each strategy depends on the particular value of p. We prove that each of these mixed equilibrium points is ESS. A more realistic way to study this dynamics with high-order interactions is to look at how it evolves in complex networks. We introduce and study an agent-based model on a network with a fixed number of nodes, which evolves as the replicator equation predicts. By studying the dynamics of this model on random networks, we find that the phase transitions between the pure and mixed equilibria depend on probability p and also on the mean degree of the network. We derive mean-field and pair approximation equations that give results in good agreement with simulations on different networks. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/203611 Kontorovsky, Natalia Lucía; Pinasco, Juan Pablo; Vazquez, Federico; Random multi-player games; American Institute of Physics; Chaos; 32; 3; 3-2022; 1-14 1054-1500 1089-7682 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/203611 |
identifier_str_mv |
Kontorovsky, Natalia Lucía; Pinasco, Juan Pablo; Vazquez, Federico; Random multi-player games; American Institute of Physics; Chaos; 32; 3; 3-2022; 1-14 1054-1500 1089-7682 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/aip/cha/article/32/3/033128/2835766/Random-multi-player-games info:eu-repo/semantics/altIdentifier/doi/10.1063/5.0080137 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613443013836800 |
score |
13.070432 |