Growth and collapse of nanovoids in tantalum monocrystals
- Autores
- Tang, Yizhe; Bringa, Eduardo Marcial; Remington, Bruce A.; Meyers, Marc A.
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The growth and collapse of nanoscale voids are investigated for tantalum (a model body-centered cubic metal) under different stress states and strain rates by molecular dynamics (MD). Three principal mechanisms of deformation are identified and quantitatively evaluated: (i) shear loop emission and subsequent expansion from the surface of the void; (ii) cooperative shear loop emission from slip planes that are parallel to the same h111i slip direction and their combination, forming prismatic loops; (iii) twinning starting at the void surface. The generation and evolution of these defects are found to be functions of stress state and strain rate. Dislocations are found to propagate preferably on {1 1 0} and {1 1 2} planes, with Burgers vectors 1/2 h111i. The dislocation shear loops generated expand in a crystallographic manner, and in hydrostatic tension and compression generate prismatic loops that detach from the void. In uniaxial tensile strain along [1 0 0], the extremities of the shear loops remain attached to the void surface, a requisite for void growth. In uniaxial compressive strain, the extremities of the shear loops can also detach from the void surface. The difference in defect evolution is explained by the equal resolved shear stress in the hydrostatic loading case, in contrast with uniaxial strain loading. Nanotwins form preferably upon both uniaxial tensile strain and hydrostatic stress (in tension) and there is a slip-to-twinning transition as the strain rate exceeds 108 s 1 . A simplified constitutive description is presented which explains the preponderance of twinning over slip in tension beyond a critical strain rate. The formation of both dislocations and twins is confirmed through laser compression experiments, which provide strain rates (108 s 1 ) comparable to MD. The dislocation velocities are determined by tracking the edge component of the expanding loops and are found to be subsonic even at extremely high stress and strain rates: 680 m s1 for 108 s 1 and 1020 m s1 for 109 s 1 . 2
Fil: Tang, Yizhe. University Of California At San Diego; Estados Unidos
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Remington, Bruce A.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Meyers, Marc A.. University Of California At San Diego; Estados Unidos - Materia
-
Molecular Dynamics
Shear Loops
Void Growth - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/16175
Ver los metadatos del registro completo
id |
CONICETDig_de1d501c084ceb8d948e3defea285dd3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/16175 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Growth and collapse of nanovoids in tantalum monocrystalsTang, YizheBringa, Eduardo MarcialRemington, Bruce A.Meyers, Marc A.Molecular DynamicsShear LoopsVoid Growthhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The growth and collapse of nanoscale voids are investigated for tantalum (a model body-centered cubic metal) under different stress states and strain rates by molecular dynamics (MD). Three principal mechanisms of deformation are identified and quantitatively evaluated: (i) shear loop emission and subsequent expansion from the surface of the void; (ii) cooperative shear loop emission from slip planes that are parallel to the same h111i slip direction and their combination, forming prismatic loops; (iii) twinning starting at the void surface. The generation and evolution of these defects are found to be functions of stress state and strain rate. Dislocations are found to propagate preferably on {1 1 0} and {1 1 2} planes, with Burgers vectors 1/2 h111i. The dislocation shear loops generated expand in a crystallographic manner, and in hydrostatic tension and compression generate prismatic loops that detach from the void. In uniaxial tensile strain along [1 0 0], the extremities of the shear loops remain attached to the void surface, a requisite for void growth. In uniaxial compressive strain, the extremities of the shear loops can also detach from the void surface. The difference in defect evolution is explained by the equal resolved shear stress in the hydrostatic loading case, in contrast with uniaxial strain loading. Nanotwins form preferably upon both uniaxial tensile strain and hydrostatic stress (in tension) and there is a slip-to-twinning transition as the strain rate exceeds 108 s 1 . A simplified constitutive description is presented which explains the preponderance of twinning over slip in tension beyond a critical strain rate. The formation of both dislocations and twins is confirmed through laser compression experiments, which provide strain rates (108 s 1 ) comparable to MD. The dislocation velocities are determined by tracking the edge component of the expanding loops and are found to be subsonic even at extremely high stress and strain rates: 680 m s1 for 108 s 1 and 1020 m s1 for 109 s 1 . 2Fil: Tang, Yizhe. University Of California At San Diego; Estados UnidosFil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Remington, Bruce A.. Lawrence Livermore National Laboratory; Estados UnidosFil: Meyers, Marc A.. University Of California At San Diego; Estados UnidosElsevier2010-12-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/16175Tang, Yizhe; Bringa, Eduardo Marcial; Remington, Bruce A.; Meyers, Marc A.; Growth and collapse of nanovoids in tantalum monocrystals; Elsevier; Acta Materialia; 59; 4; 2-12-2010; 1354-13721359-6454enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.actamat.2010.11.001info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1359645410007421info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:39:51Zoai:ri.conicet.gov.ar:11336/16175instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:39:51.897CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Growth and collapse of nanovoids in tantalum monocrystals |
title |
Growth and collapse of nanovoids in tantalum monocrystals |
spellingShingle |
Growth and collapse of nanovoids in tantalum monocrystals Tang, Yizhe Molecular Dynamics Shear Loops Void Growth |
title_short |
Growth and collapse of nanovoids in tantalum monocrystals |
title_full |
Growth and collapse of nanovoids in tantalum monocrystals |
title_fullStr |
Growth and collapse of nanovoids in tantalum monocrystals |
title_full_unstemmed |
Growth and collapse of nanovoids in tantalum monocrystals |
title_sort |
Growth and collapse of nanovoids in tantalum monocrystals |
dc.creator.none.fl_str_mv |
Tang, Yizhe Bringa, Eduardo Marcial Remington, Bruce A. Meyers, Marc A. |
author |
Tang, Yizhe |
author_facet |
Tang, Yizhe Bringa, Eduardo Marcial Remington, Bruce A. Meyers, Marc A. |
author_role |
author |
author2 |
Bringa, Eduardo Marcial Remington, Bruce A. Meyers, Marc A. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Molecular Dynamics Shear Loops Void Growth |
topic |
Molecular Dynamics Shear Loops Void Growth |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The growth and collapse of nanoscale voids are investigated for tantalum (a model body-centered cubic metal) under different stress states and strain rates by molecular dynamics (MD). Three principal mechanisms of deformation are identified and quantitatively evaluated: (i) shear loop emission and subsequent expansion from the surface of the void; (ii) cooperative shear loop emission from slip planes that are parallel to the same h111i slip direction and their combination, forming prismatic loops; (iii) twinning starting at the void surface. The generation and evolution of these defects are found to be functions of stress state and strain rate. Dislocations are found to propagate preferably on {1 1 0} and {1 1 2} planes, with Burgers vectors 1/2 h111i. The dislocation shear loops generated expand in a crystallographic manner, and in hydrostatic tension and compression generate prismatic loops that detach from the void. In uniaxial tensile strain along [1 0 0], the extremities of the shear loops remain attached to the void surface, a requisite for void growth. In uniaxial compressive strain, the extremities of the shear loops can also detach from the void surface. The difference in defect evolution is explained by the equal resolved shear stress in the hydrostatic loading case, in contrast with uniaxial strain loading. Nanotwins form preferably upon both uniaxial tensile strain and hydrostatic stress (in tension) and there is a slip-to-twinning transition as the strain rate exceeds 108 s 1 . A simplified constitutive description is presented which explains the preponderance of twinning over slip in tension beyond a critical strain rate. The formation of both dislocations and twins is confirmed through laser compression experiments, which provide strain rates (108 s 1 ) comparable to MD. The dislocation velocities are determined by tracking the edge component of the expanding loops and are found to be subsonic even at extremely high stress and strain rates: 680 m s1 for 108 s 1 and 1020 m s1 for 109 s 1 . 2 Fil: Tang, Yizhe. University Of California At San Diego; Estados Unidos Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina Fil: Remington, Bruce A.. Lawrence Livermore National Laboratory; Estados Unidos Fil: Meyers, Marc A.. University Of California At San Diego; Estados Unidos |
description |
The growth and collapse of nanoscale voids are investigated for tantalum (a model body-centered cubic metal) under different stress states and strain rates by molecular dynamics (MD). Three principal mechanisms of deformation are identified and quantitatively evaluated: (i) shear loop emission and subsequent expansion from the surface of the void; (ii) cooperative shear loop emission from slip planes that are parallel to the same h111i slip direction and their combination, forming prismatic loops; (iii) twinning starting at the void surface. The generation and evolution of these defects are found to be functions of stress state and strain rate. Dislocations are found to propagate preferably on {1 1 0} and {1 1 2} planes, with Burgers vectors 1/2 h111i. The dislocation shear loops generated expand in a crystallographic manner, and in hydrostatic tension and compression generate prismatic loops that detach from the void. In uniaxial tensile strain along [1 0 0], the extremities of the shear loops remain attached to the void surface, a requisite for void growth. In uniaxial compressive strain, the extremities of the shear loops can also detach from the void surface. The difference in defect evolution is explained by the equal resolved shear stress in the hydrostatic loading case, in contrast with uniaxial strain loading. Nanotwins form preferably upon both uniaxial tensile strain and hydrostatic stress (in tension) and there is a slip-to-twinning transition as the strain rate exceeds 108 s 1 . A simplified constitutive description is presented which explains the preponderance of twinning over slip in tension beyond a critical strain rate. The formation of both dislocations and twins is confirmed through laser compression experiments, which provide strain rates (108 s 1 ) comparable to MD. The dislocation velocities are determined by tracking the edge component of the expanding loops and are found to be subsonic even at extremely high stress and strain rates: 680 m s1 for 108 s 1 and 1020 m s1 for 109 s 1 . 2 |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-12-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/16175 Tang, Yizhe; Bringa, Eduardo Marcial; Remington, Bruce A.; Meyers, Marc A.; Growth and collapse of nanovoids in tantalum monocrystals; Elsevier; Acta Materialia; 59; 4; 2-12-2010; 1354-1372 1359-6454 |
url |
http://hdl.handle.net/11336/16175 |
identifier_str_mv |
Tang, Yizhe; Bringa, Eduardo Marcial; Remington, Bruce A.; Meyers, Marc A.; Growth and collapse of nanovoids in tantalum monocrystals; Elsevier; Acta Materialia; 59; 4; 2-12-2010; 1354-1372 1359-6454 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.actamat.2010.11.001 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1359645410007421 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082886605733888 |
score |
13.22299 |