Ductile tensile failure in metals through initiation and growth of nanosized voids
- Autores
- Tang, Yizhe; Bringa, Eduardo Marcial; Meyers, Marc A.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We here reveal the initiation of ductile failure in metals at the nanometer scale by molecular dynamics simulations coupled with a novel analytical model. This proceeds by the emission of a special type of dislocation shear loop, which can expand as a partial or perfect dislocation, evolve into a prismatic loop through reaction, or develop into twins. Molecular dynamics (MD) simulations predict a strong dependence of the stress required for the initiation of plastic flow at the surface of the void for both Cu (a model fcc metal) and Ta (a model bcc metal). The decrease in stress with increasing void size is also analyzed in terms of a new analytical approach based on the energetics of dislocation loop emission. For both fcc (copper) and bcc (tantalum) metals initiation of plastic flow in MD simulations takes place at voids as small as a tri-vacancy (radius R 0.1 nm). Extensive calculations for tantalum combined with the analytical model, which tracks the simulations, enable extrapolation to R 300 nm, in the realm of second phase particles and inclusions. Thus we conclude that this is a general mechanism of tensile failure in pure monocrystalline metals where other initiation sites are absent.
Fil: Tang, Yizhe. University Of California At San Diego; Estados Unidos
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Meyers, Marc A.. University Of California At San Diego; Estados Unidos - Materia
-
Void Growth
Dislocation
Ductile Failure
Molecular Dynamics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19298
Ver los metadatos del registro completo
id |
CONICETDig_5e89c81f6753a4690c2686362ca99541 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19298 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Ductile tensile failure in metals through initiation and growth of nanosized voidsTang, YizheBringa, Eduardo MarcialMeyers, Marc A.Void GrowthDislocationDuctile FailureMolecular Dynamicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We here reveal the initiation of ductile failure in metals at the nanometer scale by molecular dynamics simulations coupled with a novel analytical model. This proceeds by the emission of a special type of dislocation shear loop, which can expand as a partial or perfect dislocation, evolve into a prismatic loop through reaction, or develop into twins. Molecular dynamics (MD) simulations predict a strong dependence of the stress required for the initiation of plastic flow at the surface of the void for both Cu (a model fcc metal) and Ta (a model bcc metal). The decrease in stress with increasing void size is also analyzed in terms of a new analytical approach based on the energetics of dislocation loop emission. For both fcc (copper) and bcc (tantalum) metals initiation of plastic flow in MD simulations takes place at voids as small as a tri-vacancy (radius R 0.1 nm). Extensive calculations for tantalum combined with the analytical model, which tracks the simulations, enable extrapolation to R 300 nm, in the realm of second phase particles and inclusions. Thus we conclude that this is a general mechanism of tensile failure in pure monocrystalline metals where other initiation sites are absent.Fil: Tang, Yizhe. University Of California At San Diego; Estados UnidosFil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Meyers, Marc A.. University Of California At San Diego; Estados UnidosElsevier2012-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19298Tang, Yizhe; Bringa, Eduardo Marcial; Meyers, Marc A.; Ductile tensile failure in metals through initiation and growth of nanosized voids; Elsevier; Acta Materialia; 60; 12; 6-2012; 4856-48651359-6454CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.actamat.2012.05.030info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1359645412003503info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:38:50Zoai:ri.conicet.gov.ar:11336/19298instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:38:50.751CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Ductile tensile failure in metals through initiation and growth of nanosized voids |
title |
Ductile tensile failure in metals through initiation and growth of nanosized voids |
spellingShingle |
Ductile tensile failure in metals through initiation and growth of nanosized voids Tang, Yizhe Void Growth Dislocation Ductile Failure Molecular Dynamics |
title_short |
Ductile tensile failure in metals through initiation and growth of nanosized voids |
title_full |
Ductile tensile failure in metals through initiation and growth of nanosized voids |
title_fullStr |
Ductile tensile failure in metals through initiation and growth of nanosized voids |
title_full_unstemmed |
Ductile tensile failure in metals through initiation and growth of nanosized voids |
title_sort |
Ductile tensile failure in metals through initiation and growth of nanosized voids |
dc.creator.none.fl_str_mv |
Tang, Yizhe Bringa, Eduardo Marcial Meyers, Marc A. |
author |
Tang, Yizhe |
author_facet |
Tang, Yizhe Bringa, Eduardo Marcial Meyers, Marc A. |
author_role |
author |
author2 |
Bringa, Eduardo Marcial Meyers, Marc A. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Void Growth Dislocation Ductile Failure Molecular Dynamics |
topic |
Void Growth Dislocation Ductile Failure Molecular Dynamics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We here reveal the initiation of ductile failure in metals at the nanometer scale by molecular dynamics simulations coupled with a novel analytical model. This proceeds by the emission of a special type of dislocation shear loop, which can expand as a partial or perfect dislocation, evolve into a prismatic loop through reaction, or develop into twins. Molecular dynamics (MD) simulations predict a strong dependence of the stress required for the initiation of plastic flow at the surface of the void for both Cu (a model fcc metal) and Ta (a model bcc metal). The decrease in stress with increasing void size is also analyzed in terms of a new analytical approach based on the energetics of dislocation loop emission. For both fcc (copper) and bcc (tantalum) metals initiation of plastic flow in MD simulations takes place at voids as small as a tri-vacancy (radius R 0.1 nm). Extensive calculations for tantalum combined with the analytical model, which tracks the simulations, enable extrapolation to R 300 nm, in the realm of second phase particles and inclusions. Thus we conclude that this is a general mechanism of tensile failure in pure monocrystalline metals where other initiation sites are absent. Fil: Tang, Yizhe. University Of California At San Diego; Estados Unidos Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina Fil: Meyers, Marc A.. University Of California At San Diego; Estados Unidos |
description |
We here reveal the initiation of ductile failure in metals at the nanometer scale by molecular dynamics simulations coupled with a novel analytical model. This proceeds by the emission of a special type of dislocation shear loop, which can expand as a partial or perfect dislocation, evolve into a prismatic loop through reaction, or develop into twins. Molecular dynamics (MD) simulations predict a strong dependence of the stress required for the initiation of plastic flow at the surface of the void for both Cu (a model fcc metal) and Ta (a model bcc metal). The decrease in stress with increasing void size is also analyzed in terms of a new analytical approach based on the energetics of dislocation loop emission. For both fcc (copper) and bcc (tantalum) metals initiation of plastic flow in MD simulations takes place at voids as small as a tri-vacancy (radius R 0.1 nm). Extensive calculations for tantalum combined with the analytical model, which tracks the simulations, enable extrapolation to R 300 nm, in the realm of second phase particles and inclusions. Thus we conclude that this is a general mechanism of tensile failure in pure monocrystalline metals where other initiation sites are absent. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19298 Tang, Yizhe; Bringa, Eduardo Marcial; Meyers, Marc A.; Ductile tensile failure in metals through initiation and growth of nanosized voids; Elsevier; Acta Materialia; 60; 12; 6-2012; 4856-4865 1359-6454 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19298 |
identifier_str_mv |
Tang, Yizhe; Bringa, Eduardo Marcial; Meyers, Marc A.; Ductile tensile failure in metals through initiation and growth of nanosized voids; Elsevier; Acta Materialia; 60; 12; 6-2012; 4856-4865 1359-6454 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.actamat.2012.05.030 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1359645412003503 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083506188320768 |
score |
13.22299 |