Ductile tensile failure in metals through initiation and growth of nanosized voids

Autores
Tang, Yizhe; Bringa, Eduardo Marcial; Meyers, Marc A.
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We here reveal the initiation of ductile failure in metals at the nanometer scale by molecular dynamics simulations coupled with a novel analytical model. This proceeds by the emission of a special type of dislocation shear loop, which can expand as a partial or perfect dislocation, evolve into a prismatic loop through reaction, or develop into twins. Molecular dynamics (MD) simulations predict a strong dependence of the stress required for the initiation of plastic flow at the surface of the void for both Cu (a model fcc metal) and Ta (a model bcc metal). The decrease in stress with increasing void size is also analyzed in terms of a new analytical approach based on the energetics of dislocation loop emission. For both fcc (copper) and bcc (tantalum) metals initiation of plastic flow in MD simulations takes place at voids as small as a tri-vacancy (radius R 0.1 nm). Extensive calculations for tantalum combined with the analytical model, which tracks the simulations, enable extrapolation to R 300 nm, in the realm of second phase particles and inclusions. Thus we conclude that this is a general mechanism of tensile failure in pure monocrystalline metals where other initiation sites are absent.
Fil: Tang, Yizhe. University Of California At San Diego; Estados Unidos
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Meyers, Marc A.. University Of California At San Diego; Estados Unidos
Materia
Void Growth
Dislocation
Ductile Failure
Molecular Dynamics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/19298

id CONICETDig_5e89c81f6753a4690c2686362ca99541
oai_identifier_str oai:ri.conicet.gov.ar:11336/19298
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Ductile tensile failure in metals through initiation and growth of nanosized voidsTang, YizheBringa, Eduardo MarcialMeyers, Marc A.Void GrowthDislocationDuctile FailureMolecular Dynamicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We here reveal the initiation of ductile failure in metals at the nanometer scale by molecular dynamics simulations coupled with a novel analytical model. This proceeds by the emission of a special type of dislocation shear loop, which can expand as a partial or perfect dislocation, evolve into a prismatic loop through reaction, or develop into twins. Molecular dynamics (MD) simulations predict a strong dependence of the stress required for the initiation of plastic flow at the surface of the void for both Cu (a model fcc metal) and Ta (a model bcc metal). The decrease in stress with increasing void size is also analyzed in terms of a new analytical approach based on the energetics of dislocation loop emission. For both fcc (copper) and bcc (tantalum) metals initiation of plastic flow in MD simulations takes place at voids as small as a tri-vacancy (radius R 0.1 nm). Extensive calculations for tantalum combined with the analytical model, which tracks the simulations, enable extrapolation to R 300 nm, in the realm of second phase particles and inclusions. Thus we conclude that this is a general mechanism of tensile failure in pure monocrystalline metals where other initiation sites are absent.Fil: Tang, Yizhe. University Of California At San Diego; Estados UnidosFil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Meyers, Marc A.. University Of California At San Diego; Estados UnidosElsevier2012-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19298Tang, Yizhe; Bringa, Eduardo Marcial; Meyers, Marc A.; Ductile tensile failure in metals through initiation and growth of nanosized voids; Elsevier; Acta Materialia; 60; 12; 6-2012; 4856-48651359-6454CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.actamat.2012.05.030info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1359645412003503info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:38:50Zoai:ri.conicet.gov.ar:11336/19298instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:38:50.751CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Ductile tensile failure in metals through initiation and growth of nanosized voids
title Ductile tensile failure in metals through initiation and growth of nanosized voids
spellingShingle Ductile tensile failure in metals through initiation and growth of nanosized voids
Tang, Yizhe
Void Growth
Dislocation
Ductile Failure
Molecular Dynamics
title_short Ductile tensile failure in metals through initiation and growth of nanosized voids
title_full Ductile tensile failure in metals through initiation and growth of nanosized voids
title_fullStr Ductile tensile failure in metals through initiation and growth of nanosized voids
title_full_unstemmed Ductile tensile failure in metals through initiation and growth of nanosized voids
title_sort Ductile tensile failure in metals through initiation and growth of nanosized voids
dc.creator.none.fl_str_mv Tang, Yizhe
Bringa, Eduardo Marcial
Meyers, Marc A.
author Tang, Yizhe
author_facet Tang, Yizhe
Bringa, Eduardo Marcial
Meyers, Marc A.
author_role author
author2 Bringa, Eduardo Marcial
Meyers, Marc A.
author2_role author
author
dc.subject.none.fl_str_mv Void Growth
Dislocation
Ductile Failure
Molecular Dynamics
topic Void Growth
Dislocation
Ductile Failure
Molecular Dynamics
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We here reveal the initiation of ductile failure in metals at the nanometer scale by molecular dynamics simulations coupled with a novel analytical model. This proceeds by the emission of a special type of dislocation shear loop, which can expand as a partial or perfect dislocation, evolve into a prismatic loop through reaction, or develop into twins. Molecular dynamics (MD) simulations predict a strong dependence of the stress required for the initiation of plastic flow at the surface of the void for both Cu (a model fcc metal) and Ta (a model bcc metal). The decrease in stress with increasing void size is also analyzed in terms of a new analytical approach based on the energetics of dislocation loop emission. For both fcc (copper) and bcc (tantalum) metals initiation of plastic flow in MD simulations takes place at voids as small as a tri-vacancy (radius R 0.1 nm). Extensive calculations for tantalum combined with the analytical model, which tracks the simulations, enable extrapolation to R 300 nm, in the realm of second phase particles and inclusions. Thus we conclude that this is a general mechanism of tensile failure in pure monocrystalline metals where other initiation sites are absent.
Fil: Tang, Yizhe. University Of California At San Diego; Estados Unidos
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Meyers, Marc A.. University Of California At San Diego; Estados Unidos
description We here reveal the initiation of ductile failure in metals at the nanometer scale by molecular dynamics simulations coupled with a novel analytical model. This proceeds by the emission of a special type of dislocation shear loop, which can expand as a partial or perfect dislocation, evolve into a prismatic loop through reaction, or develop into twins. Molecular dynamics (MD) simulations predict a strong dependence of the stress required for the initiation of plastic flow at the surface of the void for both Cu (a model fcc metal) and Ta (a model bcc metal). The decrease in stress with increasing void size is also analyzed in terms of a new analytical approach based on the energetics of dislocation loop emission. For both fcc (copper) and bcc (tantalum) metals initiation of plastic flow in MD simulations takes place at voids as small as a tri-vacancy (radius R 0.1 nm). Extensive calculations for tantalum combined with the analytical model, which tracks the simulations, enable extrapolation to R 300 nm, in the realm of second phase particles and inclusions. Thus we conclude that this is a general mechanism of tensile failure in pure monocrystalline metals where other initiation sites are absent.
publishDate 2012
dc.date.none.fl_str_mv 2012-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/19298
Tang, Yizhe; Bringa, Eduardo Marcial; Meyers, Marc A.; Ductile tensile failure in metals through initiation and growth of nanosized voids; Elsevier; Acta Materialia; 60; 12; 6-2012; 4856-4865
1359-6454
CONICET Digital
CONICET
url http://hdl.handle.net/11336/19298
identifier_str_mv Tang, Yizhe; Bringa, Eduardo Marcial; Meyers, Marc A.; Ductile tensile failure in metals through initiation and growth of nanosized voids; Elsevier; Acta Materialia; 60; 12; 6-2012; 4856-4865
1359-6454
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.actamat.2012.05.030
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1359645412003503
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083506188320768
score 13.22299