Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation
- Autores
- Remington, T. P.; Ruestes, Carlos Javier; Bringa, Eduardo Marcial; Remington, Bruce A.; Lu, C. H.; Kad, B.; Meyers, Marc A.
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The mechanisms of deformation under a nanoindentation in tantalum, chosen as a model body-centered cubic (bcc) metal, are identified and quantified. Molecular dynamics (MD) simulations and indentation experiments are conducted for [1 0 0], [1 1 0] and [1 1 1] normals to surface orientations. The simulated plastic deformation proceeds by the formation of nanotwins, which rapidly evolve into shear dislocation loops. It is shown through a dislocation analysis that an elementary twin (three layers) is energetically favorable for a diameter below ∼7 nm, at which point a shear loop comprising a perfect dislocation is formed. MD simulations show that shear loops expand into the material by the advancement of their edge components. Simultaneously with this advancement, screw components of the loop cross-slip and generate a cylindrical surface. When opposite segments approach, they eventually cancel by virtue of the attraction between them, forming a quasi-circular prismatic loop composed of edge dislocation segments. This “lasso”-like mechanism by which a shear loop transitions to a prismatic loop is identified for both [0 0 1] and [1 1 1] indentations. The prismatic loops advance into the material along 〈1 1 1〉 directions, transporting material away from the nucleation site. Analytical calculations supplement MD and experimental observations, and provide a framework for the improved understanding of the evolution of plastic deformation under a nanoindenter. Dislocation densities under the indenter are estimated experimentally (∼1.2 × 1015 m−2), by MD (∼7 × 1015 m−2) and through an analytical calculation (2.6–19 × 1015 m−2). Considering the assumptions and simplifications, this agreement is considered satisfactory. MD simulations also show expected changes in pile-up symmetry after unloading, compatible with crystal plasticity.
Fil: Remington, T. P.. University of California at San Diego; Estados Unidos
Fil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Remington, Bruce A.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Lu, C. H.. University of California at San Diego; Estados Unidos
Fil: Kad, B.. University of California at San Diego; Estados Unidos
Fil: Meyers, Marc A.. University of California at San Diego; Estados Unidos - Materia
-
Nanoindentation
Dislocations
Molecular Dynamics
Shear Loops
Prismatic Loops - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/32239
Ver los metadatos del registro completo
id |
CONICETDig_1ba8169a6859532e3ec949a410066af6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/32239 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formationRemington, T. P.Ruestes, Carlos JavierBringa, Eduardo MarcialRemington, Bruce A.Lu, C. H.Kad, B.Meyers, Marc A.NanoindentationDislocationsMolecular DynamicsShear LoopsPrismatic Loopshttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2The mechanisms of deformation under a nanoindentation in tantalum, chosen as a model body-centered cubic (bcc) metal, are identified and quantified. Molecular dynamics (MD) simulations and indentation experiments are conducted for [1 0 0], [1 1 0] and [1 1 1] normals to surface orientations. The simulated plastic deformation proceeds by the formation of nanotwins, which rapidly evolve into shear dislocation loops. It is shown through a dislocation analysis that an elementary twin (three layers) is energetically favorable for a diameter below ∼7 nm, at which point a shear loop comprising a perfect dislocation is formed. MD simulations show that shear loops expand into the material by the advancement of their edge components. Simultaneously with this advancement, screw components of the loop cross-slip and generate a cylindrical surface. When opposite segments approach, they eventually cancel by virtue of the attraction between them, forming a quasi-circular prismatic loop composed of edge dislocation segments. This “lasso”-like mechanism by which a shear loop transitions to a prismatic loop is identified for both [0 0 1] and [1 1 1] indentations. The prismatic loops advance into the material along 〈1 1 1〉 directions, transporting material away from the nucleation site. Analytical calculations supplement MD and experimental observations, and provide a framework for the improved understanding of the evolution of plastic deformation under a nanoindenter. Dislocation densities under the indenter are estimated experimentally (∼1.2 × 1015 m−2), by MD (∼7 × 1015 m−2) and through an analytical calculation (2.6–19 × 1015 m−2). Considering the assumptions and simplifications, this agreement is considered satisfactory. MD simulations also show expected changes in pile-up symmetry after unloading, compatible with crystal plasticity.Fil: Remington, T. P.. University of California at San Diego; Estados UnidosFil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Remington, Bruce A.. Lawrence Livermore National Laboratory; Estados UnidosFil: Lu, C. H.. University of California at San Diego; Estados UnidosFil: Kad, B.. University of California at San Diego; Estados UnidosFil: Meyers, Marc A.. University of California at San Diego; Estados UnidosElsevier2014-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32239Meyers, Marc A.; Kad, B.; Lu, C. H.; Remington, Bruce A.; Bringa, Eduardo Marcial; Ruestes, Carlos Javier; et al.; Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation; Elsevier; Acta Materialia; 78; 8-2014; 378-3931359-6454CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1359645414004881info:eu-repo/semantics/altIdentifier/doi/10.1016/j.actamat.2014.06.058info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:15:34Zoai:ri.conicet.gov.ar:11336/32239instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:15:34.782CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation |
title |
Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation |
spellingShingle |
Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation Remington, T. P. Nanoindentation Dislocations Molecular Dynamics Shear Loops Prismatic Loops |
title_short |
Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation |
title_full |
Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation |
title_fullStr |
Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation |
title_full_unstemmed |
Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation |
title_sort |
Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation |
dc.creator.none.fl_str_mv |
Remington, T. P. Ruestes, Carlos Javier Bringa, Eduardo Marcial Remington, Bruce A. Lu, C. H. Kad, B. Meyers, Marc A. |
author |
Remington, T. P. |
author_facet |
Remington, T. P. Ruestes, Carlos Javier Bringa, Eduardo Marcial Remington, Bruce A. Lu, C. H. Kad, B. Meyers, Marc A. |
author_role |
author |
author2 |
Ruestes, Carlos Javier Bringa, Eduardo Marcial Remington, Bruce A. Lu, C. H. Kad, B. Meyers, Marc A. |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Nanoindentation Dislocations Molecular Dynamics Shear Loops Prismatic Loops |
topic |
Nanoindentation Dislocations Molecular Dynamics Shear Loops Prismatic Loops |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.10 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The mechanisms of deformation under a nanoindentation in tantalum, chosen as a model body-centered cubic (bcc) metal, are identified and quantified. Molecular dynamics (MD) simulations and indentation experiments are conducted for [1 0 0], [1 1 0] and [1 1 1] normals to surface orientations. The simulated plastic deformation proceeds by the formation of nanotwins, which rapidly evolve into shear dislocation loops. It is shown through a dislocation analysis that an elementary twin (three layers) is energetically favorable for a diameter below ∼7 nm, at which point a shear loop comprising a perfect dislocation is formed. MD simulations show that shear loops expand into the material by the advancement of their edge components. Simultaneously with this advancement, screw components of the loop cross-slip and generate a cylindrical surface. When opposite segments approach, they eventually cancel by virtue of the attraction between them, forming a quasi-circular prismatic loop composed of edge dislocation segments. This “lasso”-like mechanism by which a shear loop transitions to a prismatic loop is identified for both [0 0 1] and [1 1 1] indentations. The prismatic loops advance into the material along 〈1 1 1〉 directions, transporting material away from the nucleation site. Analytical calculations supplement MD and experimental observations, and provide a framework for the improved understanding of the evolution of plastic deformation under a nanoindenter. Dislocation densities under the indenter are estimated experimentally (∼1.2 × 1015 m−2), by MD (∼7 × 1015 m−2) and through an analytical calculation (2.6–19 × 1015 m−2). Considering the assumptions and simplifications, this agreement is considered satisfactory. MD simulations also show expected changes in pile-up symmetry after unloading, compatible with crystal plasticity. Fil: Remington, T. P.. University of California at San Diego; Estados Unidos Fil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina Fil: Remington, Bruce A.. Lawrence Livermore National Laboratory; Estados Unidos Fil: Lu, C. H.. University of California at San Diego; Estados Unidos Fil: Kad, B.. University of California at San Diego; Estados Unidos Fil: Meyers, Marc A.. University of California at San Diego; Estados Unidos |
description |
The mechanisms of deformation under a nanoindentation in tantalum, chosen as a model body-centered cubic (bcc) metal, are identified and quantified. Molecular dynamics (MD) simulations and indentation experiments are conducted for [1 0 0], [1 1 0] and [1 1 1] normals to surface orientations. The simulated plastic deformation proceeds by the formation of nanotwins, which rapidly evolve into shear dislocation loops. It is shown through a dislocation analysis that an elementary twin (three layers) is energetically favorable for a diameter below ∼7 nm, at which point a shear loop comprising a perfect dislocation is formed. MD simulations show that shear loops expand into the material by the advancement of their edge components. Simultaneously with this advancement, screw components of the loop cross-slip and generate a cylindrical surface. When opposite segments approach, they eventually cancel by virtue of the attraction between them, forming a quasi-circular prismatic loop composed of edge dislocation segments. This “lasso”-like mechanism by which a shear loop transitions to a prismatic loop is identified for both [0 0 1] and [1 1 1] indentations. The prismatic loops advance into the material along 〈1 1 1〉 directions, transporting material away from the nucleation site. Analytical calculations supplement MD and experimental observations, and provide a framework for the improved understanding of the evolution of plastic deformation under a nanoindenter. Dislocation densities under the indenter are estimated experimentally (∼1.2 × 1015 m−2), by MD (∼7 × 1015 m−2) and through an analytical calculation (2.6–19 × 1015 m−2). Considering the assumptions and simplifications, this agreement is considered satisfactory. MD simulations also show expected changes in pile-up symmetry after unloading, compatible with crystal plasticity. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/32239 Meyers, Marc A.; Kad, B.; Lu, C. H.; Remington, Bruce A.; Bringa, Eduardo Marcial; Ruestes, Carlos Javier; et al.; Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation; Elsevier; Acta Materialia; 78; 8-2014; 378-393 1359-6454 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/32239 |
identifier_str_mv |
Meyers, Marc A.; Kad, B.; Lu, C. H.; Remington, Bruce A.; Bringa, Eduardo Marcial; Ruestes, Carlos Javier; et al.; Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation; Elsevier; Acta Materialia; 78; 8-2014; 378-393 1359-6454 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1359645414004881 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.actamat.2014.06.058 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980841121120256 |
score |
13.004268 |