Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation

Autores
Remington, T. P.; Ruestes, Carlos Javier; Bringa, Eduardo Marcial; Remington, Bruce A.; Lu, C. H.; Kad, B.; Meyers, Marc A.
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The mechanisms of deformation under a nanoindentation in tantalum, chosen as a model body-centered cubic (bcc) metal, are identified and quantified. Molecular dynamics (MD) simulations and indentation experiments are conducted for [1 0 0], [1 1 0] and [1 1 1] normals to surface orientations. The simulated plastic deformation proceeds by the formation of nanotwins, which rapidly evolve into shear dislocation loops. It is shown through a dislocation analysis that an elementary twin (three layers) is energetically favorable for a diameter below ∼7 nm, at which point a shear loop comprising a perfect dislocation is formed. MD simulations show that shear loops expand into the material by the advancement of their edge components. Simultaneously with this advancement, screw components of the loop cross-slip and generate a cylindrical surface. When opposite segments approach, they eventually cancel by virtue of the attraction between them, forming a quasi-circular prismatic loop composed of edge dislocation segments. This “lasso”-like mechanism by which a shear loop transitions to a prismatic loop is identified for both [0 0 1] and [1 1 1] indentations. The prismatic loops advance into the material along 〈1 1 1〉 directions, transporting material away from the nucleation site. Analytical calculations supplement MD and experimental observations, and provide a framework for the improved understanding of the evolution of plastic deformation under a nanoindenter. Dislocation densities under the indenter are estimated experimentally (∼1.2 × 1015 m−2), by MD (∼7 × 1015 m−2) and through an analytical calculation (2.6–19 × 1015 m−2). Considering the assumptions and simplifications, this agreement is considered satisfactory. MD simulations also show expected changes in pile-up symmetry after unloading, compatible with crystal plasticity.
Fil: Remington, T. P.. University of California at San Diego; Estados Unidos
Fil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Remington, Bruce A.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Lu, C. H.. University of California at San Diego; Estados Unidos
Fil: Kad, B.. University of California at San Diego; Estados Unidos
Fil: Meyers, Marc A.. University of California at San Diego; Estados Unidos
Materia
Nanoindentation
Dislocations
Molecular Dynamics
Shear Loops
Prismatic Loops
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/32239

id CONICETDig_1ba8169a6859532e3ec949a410066af6
oai_identifier_str oai:ri.conicet.gov.ar:11336/32239
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formationRemington, T. P.Ruestes, Carlos JavierBringa, Eduardo MarcialRemington, Bruce A.Lu, C. H.Kad, B.Meyers, Marc A.NanoindentationDislocationsMolecular DynamicsShear LoopsPrismatic Loopshttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2The mechanisms of deformation under a nanoindentation in tantalum, chosen as a model body-centered cubic (bcc) metal, are identified and quantified. Molecular dynamics (MD) simulations and indentation experiments are conducted for [1 0 0], [1 1 0] and [1 1 1] normals to surface orientations. The simulated plastic deformation proceeds by the formation of nanotwins, which rapidly evolve into shear dislocation loops. It is shown through a dislocation analysis that an elementary twin (three layers) is energetically favorable for a diameter below ∼7 nm, at which point a shear loop comprising a perfect dislocation is formed. MD simulations show that shear loops expand into the material by the advancement of their edge components. Simultaneously with this advancement, screw components of the loop cross-slip and generate a cylindrical surface. When opposite segments approach, they eventually cancel by virtue of the attraction between them, forming a quasi-circular prismatic loop composed of edge dislocation segments. This “lasso”-like mechanism by which a shear loop transitions to a prismatic loop is identified for both [0 0 1] and [1 1 1] indentations. The prismatic loops advance into the material along 〈1 1 1〉 directions, transporting material away from the nucleation site. Analytical calculations supplement MD and experimental observations, and provide a framework for the improved understanding of the evolution of plastic deformation under a nanoindenter. Dislocation densities under the indenter are estimated experimentally (∼1.2 × 1015 m−2), by MD (∼7 × 1015 m−2) and through an analytical calculation (2.6–19 × 1015 m−2). Considering the assumptions and simplifications, this agreement is considered satisfactory. MD simulations also show expected changes in pile-up symmetry after unloading, compatible with crystal plasticity.Fil: Remington, T. P.. University of California at San Diego; Estados UnidosFil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Remington, Bruce A.. Lawrence Livermore National Laboratory; Estados UnidosFil: Lu, C. H.. University of California at San Diego; Estados UnidosFil: Kad, B.. University of California at San Diego; Estados UnidosFil: Meyers, Marc A.. University of California at San Diego; Estados UnidosElsevier2014-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32239Meyers, Marc A.; Kad, B.; Lu, C. H.; Remington, Bruce A.; Bringa, Eduardo Marcial; Ruestes, Carlos Javier; et al.; Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation; Elsevier; Acta Materialia; 78; 8-2014; 378-3931359-6454CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1359645414004881info:eu-repo/semantics/altIdentifier/doi/10.1016/j.actamat.2014.06.058info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:15:34Zoai:ri.conicet.gov.ar:11336/32239instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:15:34.782CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation
title Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation
spellingShingle Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation
Remington, T. P.
Nanoindentation
Dislocations
Molecular Dynamics
Shear Loops
Prismatic Loops
title_short Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation
title_full Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation
title_fullStr Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation
title_full_unstemmed Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation
title_sort Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation
dc.creator.none.fl_str_mv Remington, T. P.
Ruestes, Carlos Javier
Bringa, Eduardo Marcial
Remington, Bruce A.
Lu, C. H.
Kad, B.
Meyers, Marc A.
author Remington, T. P.
author_facet Remington, T. P.
Ruestes, Carlos Javier
Bringa, Eduardo Marcial
Remington, Bruce A.
Lu, C. H.
Kad, B.
Meyers, Marc A.
author_role author
author2 Ruestes, Carlos Javier
Bringa, Eduardo Marcial
Remington, Bruce A.
Lu, C. H.
Kad, B.
Meyers, Marc A.
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Nanoindentation
Dislocations
Molecular Dynamics
Shear Loops
Prismatic Loops
topic Nanoindentation
Dislocations
Molecular Dynamics
Shear Loops
Prismatic Loops
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.10
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The mechanisms of deformation under a nanoindentation in tantalum, chosen as a model body-centered cubic (bcc) metal, are identified and quantified. Molecular dynamics (MD) simulations and indentation experiments are conducted for [1 0 0], [1 1 0] and [1 1 1] normals to surface orientations. The simulated plastic deformation proceeds by the formation of nanotwins, which rapidly evolve into shear dislocation loops. It is shown through a dislocation analysis that an elementary twin (three layers) is energetically favorable for a diameter below ∼7 nm, at which point a shear loop comprising a perfect dislocation is formed. MD simulations show that shear loops expand into the material by the advancement of their edge components. Simultaneously with this advancement, screw components of the loop cross-slip and generate a cylindrical surface. When opposite segments approach, they eventually cancel by virtue of the attraction between them, forming a quasi-circular prismatic loop composed of edge dislocation segments. This “lasso”-like mechanism by which a shear loop transitions to a prismatic loop is identified for both [0 0 1] and [1 1 1] indentations. The prismatic loops advance into the material along 〈1 1 1〉 directions, transporting material away from the nucleation site. Analytical calculations supplement MD and experimental observations, and provide a framework for the improved understanding of the evolution of plastic deformation under a nanoindenter. Dislocation densities under the indenter are estimated experimentally (∼1.2 × 1015 m−2), by MD (∼7 × 1015 m−2) and through an analytical calculation (2.6–19 × 1015 m−2). Considering the assumptions and simplifications, this agreement is considered satisfactory. MD simulations also show expected changes in pile-up symmetry after unloading, compatible with crystal plasticity.
Fil: Remington, T. P.. University of California at San Diego; Estados Unidos
Fil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Remington, Bruce A.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Lu, C. H.. University of California at San Diego; Estados Unidos
Fil: Kad, B.. University of California at San Diego; Estados Unidos
Fil: Meyers, Marc A.. University of California at San Diego; Estados Unidos
description The mechanisms of deformation under a nanoindentation in tantalum, chosen as a model body-centered cubic (bcc) metal, are identified and quantified. Molecular dynamics (MD) simulations and indentation experiments are conducted for [1 0 0], [1 1 0] and [1 1 1] normals to surface orientations. The simulated plastic deformation proceeds by the formation of nanotwins, which rapidly evolve into shear dislocation loops. It is shown through a dislocation analysis that an elementary twin (three layers) is energetically favorable for a diameter below ∼7 nm, at which point a shear loop comprising a perfect dislocation is formed. MD simulations show that shear loops expand into the material by the advancement of their edge components. Simultaneously with this advancement, screw components of the loop cross-slip and generate a cylindrical surface. When opposite segments approach, they eventually cancel by virtue of the attraction between them, forming a quasi-circular prismatic loop composed of edge dislocation segments. This “lasso”-like mechanism by which a shear loop transitions to a prismatic loop is identified for both [0 0 1] and [1 1 1] indentations. The prismatic loops advance into the material along 〈1 1 1〉 directions, transporting material away from the nucleation site. Analytical calculations supplement MD and experimental observations, and provide a framework for the improved understanding of the evolution of plastic deformation under a nanoindenter. Dislocation densities under the indenter are estimated experimentally (∼1.2 × 1015 m−2), by MD (∼7 × 1015 m−2) and through an analytical calculation (2.6–19 × 1015 m−2). Considering the assumptions and simplifications, this agreement is considered satisfactory. MD simulations also show expected changes in pile-up symmetry after unloading, compatible with crystal plasticity.
publishDate 2014
dc.date.none.fl_str_mv 2014-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/32239
Meyers, Marc A.; Kad, B.; Lu, C. H.; Remington, Bruce A.; Bringa, Eduardo Marcial; Ruestes, Carlos Javier; et al.; Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation; Elsevier; Acta Materialia; 78; 8-2014; 378-393
1359-6454
CONICET Digital
CONICET
url http://hdl.handle.net/11336/32239
identifier_str_mv Meyers, Marc A.; Kad, B.; Lu, C. H.; Remington, Bruce A.; Bringa, Eduardo Marcial; Ruestes, Carlos Javier; et al.; Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation; Elsevier; Acta Materialia; 78; 8-2014; 378-393
1359-6454
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1359645414004881
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.actamat.2014.06.058
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980841121120256
score 13.004268