Universal coefficient theorem in triangulated categories
- Autores
- Pirashvili, Teimuraz; Redondo, Maria Julia
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider a homology theory Open image in new window on a triangulated category Open image in new window with values in an abelian category Open image in new window . If the functor h reflects isomorphisms, is full and is such that for any object x in Open image in new window there is an object X in Open image in new window with an isomorphism between h(X) and x, we prove that Open image in new window is a hereditary abelian category, all idempotents in Open image in new window split and the kernel of h is a square zero ideal which as a bifunctor on Open image in new window is isomorphic to Open image in new window.
Fil: Pirashvili, Teimuraz. University of Leicester; Reino Unido
Fil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina - Materia
-
Abelian Category
Homology Theory
Triangulated Category - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/79648
Ver los metadatos del registro completo
id |
CONICETDig_ddc563c2ec064902893c69f49f5dddba |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/79648 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Universal coefficient theorem in triangulated categoriesPirashvili, TeimurazRedondo, Maria JuliaAbelian CategoryHomology TheoryTriangulated Categoryhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider a homology theory Open image in new window on a triangulated category Open image in new window with values in an abelian category Open image in new window . If the functor h reflects isomorphisms, is full and is such that for any object x in Open image in new window there is an object X in Open image in new window with an isomorphism between h(X) and x, we prove that Open image in new window is a hereditary abelian category, all idempotents in Open image in new window split and the kernel of h is a square zero ideal which as a bifunctor on Open image in new window is isomorphic to Open image in new window.Fil: Pirashvili, Teimuraz. University of Leicester; Reino UnidoFil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaSpringer Verlag Berlín2008-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/79648Pirashvili, Teimuraz; Redondo, Maria Julia; Universal coefficient theorem in triangulated categories; Springer Verlag Berlín; Algebras and Representation Theory; 11; 2; 4-2008; 107-1141386-923X1572-9079CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10468-007-9077-yinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10468-007-9077-yinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/math/0604412info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:14:08Zoai:ri.conicet.gov.ar:11336/79648instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:14:08.297CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Universal coefficient theorem in triangulated categories |
title |
Universal coefficient theorem in triangulated categories |
spellingShingle |
Universal coefficient theorem in triangulated categories Pirashvili, Teimuraz Abelian Category Homology Theory Triangulated Category |
title_short |
Universal coefficient theorem in triangulated categories |
title_full |
Universal coefficient theorem in triangulated categories |
title_fullStr |
Universal coefficient theorem in triangulated categories |
title_full_unstemmed |
Universal coefficient theorem in triangulated categories |
title_sort |
Universal coefficient theorem in triangulated categories |
dc.creator.none.fl_str_mv |
Pirashvili, Teimuraz Redondo, Maria Julia |
author |
Pirashvili, Teimuraz |
author_facet |
Pirashvili, Teimuraz Redondo, Maria Julia |
author_role |
author |
author2 |
Redondo, Maria Julia |
author2_role |
author |
dc.subject.none.fl_str_mv |
Abelian Category Homology Theory Triangulated Category |
topic |
Abelian Category Homology Theory Triangulated Category |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider a homology theory Open image in new window on a triangulated category Open image in new window with values in an abelian category Open image in new window . If the functor h reflects isomorphisms, is full and is such that for any object x in Open image in new window there is an object X in Open image in new window with an isomorphism between h(X) and x, we prove that Open image in new window is a hereditary abelian category, all idempotents in Open image in new window split and the kernel of h is a square zero ideal which as a bifunctor on Open image in new window is isomorphic to Open image in new window. Fil: Pirashvili, Teimuraz. University of Leicester; Reino Unido Fil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina |
description |
We consider a homology theory Open image in new window on a triangulated category Open image in new window with values in an abelian category Open image in new window . If the functor h reflects isomorphisms, is full and is such that for any object x in Open image in new window there is an object X in Open image in new window with an isomorphism between h(X) and x, we prove that Open image in new window is a hereditary abelian category, all idempotents in Open image in new window split and the kernel of h is a square zero ideal which as a bifunctor on Open image in new window is isomorphic to Open image in new window. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/79648 Pirashvili, Teimuraz; Redondo, Maria Julia; Universal coefficient theorem in triangulated categories; Springer Verlag Berlín; Algebras and Representation Theory; 11; 2; 4-2008; 107-114 1386-923X 1572-9079 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/79648 |
identifier_str_mv |
Pirashvili, Teimuraz; Redondo, Maria Julia; Universal coefficient theorem in triangulated categories; Springer Verlag Berlín; Algebras and Representation Theory; 11; 2; 4-2008; 107-114 1386-923X 1572-9079 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10468-007-9077-y info:eu-repo/semantics/altIdentifier/doi/10.1007/s10468-007-9077-y info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/math/0604412 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer Verlag Berlín |
publisher.none.fl_str_mv |
Springer Verlag Berlín |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614065401364480 |
score |
13.070432 |