Universal coefficient theorem in triangulated categories
- Autores
- Pirashvili, Teimuraz; Redondo, Maria Julia
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider a homology theory Open image in new window on a triangulated category Open image in new window with values in an abelian category Open image in new window . If the functor h reflects isomorphisms, is full and is such that for any object x in Open image in new window there is an object X in Open image in new window with an isomorphism between h(X) and x, we prove that Open image in new window is a hereditary abelian category, all idempotents in Open image in new window split and the kernel of h is a square zero ideal which as a bifunctor on Open image in new window is isomorphic to Open image in new window.
Fil: Pirashvili, Teimuraz. University of Leicester; Reino Unido
Fil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina - Materia
-
Abelian Category
Homology Theory
Triangulated Category - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/79648
Ver los metadatos del registro completo
| id |
CONICETDig_ddc563c2ec064902893c69f49f5dddba |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/79648 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Universal coefficient theorem in triangulated categoriesPirashvili, TeimurazRedondo, Maria JuliaAbelian CategoryHomology TheoryTriangulated Categoryhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider a homology theory Open image in new window on a triangulated category Open image in new window with values in an abelian category Open image in new window . If the functor h reflects isomorphisms, is full and is such that for any object x in Open image in new window there is an object X in Open image in new window with an isomorphism between h(X) and x, we prove that Open image in new window is a hereditary abelian category, all idempotents in Open image in new window split and the kernel of h is a square zero ideal which as a bifunctor on Open image in new window is isomorphic to Open image in new window.Fil: Pirashvili, Teimuraz. University of Leicester; Reino UnidoFil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaSpringer Verlag Berlín2008-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/79648Pirashvili, Teimuraz; Redondo, Maria Julia; Universal coefficient theorem in triangulated categories; Springer Verlag Berlín; Algebras and Representation Theory; 11; 2; 4-2008; 107-1141386-923X1572-9079CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10468-007-9077-yinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10468-007-9077-yinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/math/0604412info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:44:09Zoai:ri.conicet.gov.ar:11336/79648instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:44:09.919CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Universal coefficient theorem in triangulated categories |
| title |
Universal coefficient theorem in triangulated categories |
| spellingShingle |
Universal coefficient theorem in triangulated categories Pirashvili, Teimuraz Abelian Category Homology Theory Triangulated Category |
| title_short |
Universal coefficient theorem in triangulated categories |
| title_full |
Universal coefficient theorem in triangulated categories |
| title_fullStr |
Universal coefficient theorem in triangulated categories |
| title_full_unstemmed |
Universal coefficient theorem in triangulated categories |
| title_sort |
Universal coefficient theorem in triangulated categories |
| dc.creator.none.fl_str_mv |
Pirashvili, Teimuraz Redondo, Maria Julia |
| author |
Pirashvili, Teimuraz |
| author_facet |
Pirashvili, Teimuraz Redondo, Maria Julia |
| author_role |
author |
| author2 |
Redondo, Maria Julia |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Abelian Category Homology Theory Triangulated Category |
| topic |
Abelian Category Homology Theory Triangulated Category |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We consider a homology theory Open image in new window on a triangulated category Open image in new window with values in an abelian category Open image in new window . If the functor h reflects isomorphisms, is full and is such that for any object x in Open image in new window there is an object X in Open image in new window with an isomorphism between h(X) and x, we prove that Open image in new window is a hereditary abelian category, all idempotents in Open image in new window split and the kernel of h is a square zero ideal which as a bifunctor on Open image in new window is isomorphic to Open image in new window. Fil: Pirashvili, Teimuraz. University of Leicester; Reino Unido Fil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina |
| description |
We consider a homology theory Open image in new window on a triangulated category Open image in new window with values in an abelian category Open image in new window . If the functor h reflects isomorphisms, is full and is such that for any object x in Open image in new window there is an object X in Open image in new window with an isomorphism between h(X) and x, we prove that Open image in new window is a hereditary abelian category, all idempotents in Open image in new window split and the kernel of h is a square zero ideal which as a bifunctor on Open image in new window is isomorphic to Open image in new window. |
| publishDate |
2008 |
| dc.date.none.fl_str_mv |
2008-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/79648 Pirashvili, Teimuraz; Redondo, Maria Julia; Universal coefficient theorem in triangulated categories; Springer Verlag Berlín; Algebras and Representation Theory; 11; 2; 4-2008; 107-114 1386-923X 1572-9079 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/79648 |
| identifier_str_mv |
Pirashvili, Teimuraz; Redondo, Maria Julia; Universal coefficient theorem in triangulated categories; Springer Verlag Berlín; Algebras and Representation Theory; 11; 2; 4-2008; 107-114 1386-923X 1572-9079 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10468-007-9077-y info:eu-repo/semantics/altIdentifier/doi/10.1007/s10468-007-9077-y info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/math/0604412 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Springer Verlag Berlín |
| publisher.none.fl_str_mv |
Springer Verlag Berlín |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782135333027840 |
| score |
12.982451 |