On the Classification of Almost Square-Free Modular Categories
- Autores
- Dong, Jingcheng; Natale, Sonia Lujan
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let (Formula presented.) be a modular category of Frobenius-Perron dimension dqn, where q > 2 is a prime number and d is a square-free integer. We show that (Formula presented.) must be integral and nilpotent and therefore group-theoretical. In the case where q = 2, we describe the structure of (Formula presented.) in terms of equivariantizations of group-crossed braided fusion categories.
Fil: Dong, Jingcheng. Nanjing Agricultural University; China
Fil: Natale, Sonia Lujan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
BRAIDED FUSION CATEGORY
BRAIDED G-CROSSED FUSION CATEGORY
GROUP-THEORETICAL FUSION CATEGORY
MODULAR CATEGORY
TANNAKIAN CATEGORY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/59995
Ver los metadatos del registro completo
| id |
CONICETDig_1996536626dd2fba5e442fa8d13310da |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/59995 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
On the Classification of Almost Square-Free Modular CategoriesDong, JingchengNatale, Sonia LujanBRAIDED FUSION CATEGORYBRAIDED G-CROSSED FUSION CATEGORYGROUP-THEORETICAL FUSION CATEGORYMODULAR CATEGORYTANNAKIAN CATEGORYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let (Formula presented.) be a modular category of Frobenius-Perron dimension dqn, where q > 2 is a prime number and d is a square-free integer. We show that (Formula presented.) must be integral and nilpotent and therefore group-theoretical. In the case where q = 2, we describe the structure of (Formula presented.) in terms of equivariantizations of group-crossed braided fusion categories.Fil: Dong, Jingcheng. Nanjing Agricultural University; ChinaFil: Natale, Sonia Lujan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaSpringer2017-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59995Dong, Jingcheng; Natale, Sonia Lujan; On the Classification of Almost Square-Free Modular Categories; Springer; Algebras and Representation Theory; 11-2017; 1-161386-923XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10468-017-9750-8info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10468-017-9750-8info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T12:49:51Zoai:ri.conicet.gov.ar:11336/59995instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 12:49:52.128CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
On the Classification of Almost Square-Free Modular Categories |
| title |
On the Classification of Almost Square-Free Modular Categories |
| spellingShingle |
On the Classification of Almost Square-Free Modular Categories Dong, Jingcheng BRAIDED FUSION CATEGORY BRAIDED G-CROSSED FUSION CATEGORY GROUP-THEORETICAL FUSION CATEGORY MODULAR CATEGORY TANNAKIAN CATEGORY |
| title_short |
On the Classification of Almost Square-Free Modular Categories |
| title_full |
On the Classification of Almost Square-Free Modular Categories |
| title_fullStr |
On the Classification of Almost Square-Free Modular Categories |
| title_full_unstemmed |
On the Classification of Almost Square-Free Modular Categories |
| title_sort |
On the Classification of Almost Square-Free Modular Categories |
| dc.creator.none.fl_str_mv |
Dong, Jingcheng Natale, Sonia Lujan |
| author |
Dong, Jingcheng |
| author_facet |
Dong, Jingcheng Natale, Sonia Lujan |
| author_role |
author |
| author2 |
Natale, Sonia Lujan |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
BRAIDED FUSION CATEGORY BRAIDED G-CROSSED FUSION CATEGORY GROUP-THEORETICAL FUSION CATEGORY MODULAR CATEGORY TANNAKIAN CATEGORY |
| topic |
BRAIDED FUSION CATEGORY BRAIDED G-CROSSED FUSION CATEGORY GROUP-THEORETICAL FUSION CATEGORY MODULAR CATEGORY TANNAKIAN CATEGORY |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Let (Formula presented.) be a modular category of Frobenius-Perron dimension dqn, where q > 2 is a prime number and d is a square-free integer. We show that (Formula presented.) must be integral and nilpotent and therefore group-theoretical. In the case where q = 2, we describe the structure of (Formula presented.) in terms of equivariantizations of group-crossed braided fusion categories. Fil: Dong, Jingcheng. Nanjing Agricultural University; China Fil: Natale, Sonia Lujan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
| description |
Let (Formula presented.) be a modular category of Frobenius-Perron dimension dqn, where q > 2 is a prime number and d is a square-free integer. We show that (Formula presented.) must be integral and nilpotent and therefore group-theoretical. In the case where q = 2, we describe the structure of (Formula presented.) in terms of equivariantizations of group-crossed braided fusion categories. |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017-11 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/59995 Dong, Jingcheng; Natale, Sonia Lujan; On the Classification of Almost Square-Free Modular Categories; Springer; Algebras and Representation Theory; 11-2017; 1-16 1386-923X CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/59995 |
| identifier_str_mv |
Dong, Jingcheng; Natale, Sonia Lujan; On the Classification of Almost Square-Free Modular Categories; Springer; Algebras and Representation Theory; 11-2017; 1-16 1386-923X CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10468-017-9750-8 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10468-017-9750-8 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847427572383612928 |
| score |
13.10058 |