Enhanced Sparse Bayesian Learning via Statistical Thresholding for Signals in Structured Noise
- Autores
- Hurtado, Martin; Muravchik, Carlos Horacio; Nehorai, Arye
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we address the problem of sparse signal reconstruction. We propose a new algorithm that determines the signal support applying statistical thresholding to accept the active components of the model. This adaptive decision test is integrated into the sparse Bayesian learning method, improving its accuracy and reducing convergence time. Moreover, we extend the formulation to accept multiple measurement sequences of signal contaminated by structured noise in addition to white noise. We also develop analytical expressions to evaluate the algorithm estimation error as a function of the problem sparsity and indeterminacy. By simulations, we compare the performance of the proposed algorithm with respect to other existing methods. We show a practical application processing real data of a polarimetric radar to separate the target signal from the clutter.
Fil: Hurtado, Martin. Universidad Nacional de La Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Muravchik, Carlos Horacio. Universidad Nacional de La Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Nehorai, Arye. Washington University in St. Louis; Estados Unidos - Materia
-
Bayesian Estimation
Constant False Alarm Rate (Cfar)
Probabilistic Framework
Radar
Radar Detection
Sparse Model
Sparse Signal Reconstruction
Statistical Thresholding - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/23419
Ver los metadatos del registro completo
id |
CONICETDig_dd8754990766fd0480c313c4b987c572 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/23419 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Enhanced Sparse Bayesian Learning via Statistical Thresholding for Signals in Structured NoiseHurtado, MartinMuravchik, Carlos HoracioNehorai, AryeBayesian EstimationConstant False Alarm Rate (Cfar)Probabilistic FrameworkRadarRadar DetectionSparse ModelSparse Signal ReconstructionStatistical Thresholdinghttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In this paper we address the problem of sparse signal reconstruction. We propose a new algorithm that determines the signal support applying statistical thresholding to accept the active components of the model. This adaptive decision test is integrated into the sparse Bayesian learning method, improving its accuracy and reducing convergence time. Moreover, we extend the formulation to accept multiple measurement sequences of signal contaminated by structured noise in addition to white noise. We also develop analytical expressions to evaluate the algorithm estimation error as a function of the problem sparsity and indeterminacy. By simulations, we compare the performance of the proposed algorithm with respect to other existing methods. We show a practical application processing real data of a polarimetric radar to separate the target signal from the clutter.Fil: Hurtado, Martin. Universidad Nacional de La Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Muravchik, Carlos Horacio. Universidad Nacional de La Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Nehorai, Arye. Washington University in St. Louis; Estados UnidosInstitute of Electrical and Electronics Engineers2013-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/23419Hurtado, Martin; Muravchik, Carlos Horacio; Nehorai, Arye; Enhanced Sparse Bayesian Learning via Statistical Thresholding for Signals in Structured Noise; Institute of Electrical and Electronics Engineers; IEEE Transactions On Signal Processing; 61; 21; 11-2013; 5430-54431053-587XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1109/TSP.2013.2278811info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/6581884/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:19Zoai:ri.conicet.gov.ar:11336/23419instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:19.925CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Enhanced Sparse Bayesian Learning via Statistical Thresholding for Signals in Structured Noise |
title |
Enhanced Sparse Bayesian Learning via Statistical Thresholding for Signals in Structured Noise |
spellingShingle |
Enhanced Sparse Bayesian Learning via Statistical Thresholding for Signals in Structured Noise Hurtado, Martin Bayesian Estimation Constant False Alarm Rate (Cfar) Probabilistic Framework Radar Radar Detection Sparse Model Sparse Signal Reconstruction Statistical Thresholding |
title_short |
Enhanced Sparse Bayesian Learning via Statistical Thresholding for Signals in Structured Noise |
title_full |
Enhanced Sparse Bayesian Learning via Statistical Thresholding for Signals in Structured Noise |
title_fullStr |
Enhanced Sparse Bayesian Learning via Statistical Thresholding for Signals in Structured Noise |
title_full_unstemmed |
Enhanced Sparse Bayesian Learning via Statistical Thresholding for Signals in Structured Noise |
title_sort |
Enhanced Sparse Bayesian Learning via Statistical Thresholding for Signals in Structured Noise |
dc.creator.none.fl_str_mv |
Hurtado, Martin Muravchik, Carlos Horacio Nehorai, Arye |
author |
Hurtado, Martin |
author_facet |
Hurtado, Martin Muravchik, Carlos Horacio Nehorai, Arye |
author_role |
author |
author2 |
Muravchik, Carlos Horacio Nehorai, Arye |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Bayesian Estimation Constant False Alarm Rate (Cfar) Probabilistic Framework Radar Radar Detection Sparse Model Sparse Signal Reconstruction Statistical Thresholding |
topic |
Bayesian Estimation Constant False Alarm Rate (Cfar) Probabilistic Framework Radar Radar Detection Sparse Model Sparse Signal Reconstruction Statistical Thresholding |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this paper we address the problem of sparse signal reconstruction. We propose a new algorithm that determines the signal support applying statistical thresholding to accept the active components of the model. This adaptive decision test is integrated into the sparse Bayesian learning method, improving its accuracy and reducing convergence time. Moreover, we extend the formulation to accept multiple measurement sequences of signal contaminated by structured noise in addition to white noise. We also develop analytical expressions to evaluate the algorithm estimation error as a function of the problem sparsity and indeterminacy. By simulations, we compare the performance of the proposed algorithm with respect to other existing methods. We show a practical application processing real data of a polarimetric radar to separate the target signal from the clutter. Fil: Hurtado, Martin. Universidad Nacional de La Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Muravchik, Carlos Horacio. Universidad Nacional de La Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Nehorai, Arye. Washington University in St. Louis; Estados Unidos |
description |
In this paper we address the problem of sparse signal reconstruction. We propose a new algorithm that determines the signal support applying statistical thresholding to accept the active components of the model. This adaptive decision test is integrated into the sparse Bayesian learning method, improving its accuracy and reducing convergence time. Moreover, we extend the formulation to accept multiple measurement sequences of signal contaminated by structured noise in addition to white noise. We also develop analytical expressions to evaluate the algorithm estimation error as a function of the problem sparsity and indeterminacy. By simulations, we compare the performance of the proposed algorithm with respect to other existing methods. We show a practical application processing real data of a polarimetric radar to separate the target signal from the clutter. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/23419 Hurtado, Martin; Muravchik, Carlos Horacio; Nehorai, Arye; Enhanced Sparse Bayesian Learning via Statistical Thresholding for Signals in Structured Noise; Institute of Electrical and Electronics Engineers; IEEE Transactions On Signal Processing; 61; 21; 11-2013; 5430-5443 1053-587X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/23419 |
identifier_str_mv |
Hurtado, Martin; Muravchik, Carlos Horacio; Nehorai, Arye; Enhanced Sparse Bayesian Learning via Statistical Thresholding for Signals in Structured Noise; Institute of Electrical and Electronics Engineers; IEEE Transactions On Signal Processing; 61; 21; 11-2013; 5430-5443 1053-587X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1109/TSP.2013.2278811 info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/6581884/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268967119355904 |
score |
13.13397 |