Enhanced Sparse Bayesian Learning via Statistical Thresholding for Signals in Structured Noise

Autores
Hurtado, Martin; Muravchik, Carlos Horacio; Nehorai, Arye
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we address the problem of sparse signal reconstruction. We propose a new algorithm that determines the signal support applying statistical thresholding to accept the active components of the model. This adaptive decision test is integrated into the sparse Bayesian learning method, improving its accuracy and reducing convergence time. Moreover, we extend the formulation to accept multiple measurement sequences of signal contaminated by structured noise in addition to white noise. We also develop analytical expressions to evaluate the algorithm estimation error as a function of the problem sparsity and indeterminacy. By simulations, we compare the performance of the proposed algorithm with respect to other existing methods. We show a practical application processing real data of a polarimetric radar to separate the target signal from the clutter.
Fil: Hurtado, Martin. Universidad Nacional de La Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Muravchik, Carlos Horacio. Universidad Nacional de La Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Nehorai, Arye. Washington University in St. Louis; Estados Unidos
Materia
Bayesian Estimation
Constant False Alarm Rate (Cfar)
Probabilistic Framework
Radar
Radar Detection
Sparse Model
Sparse Signal Reconstruction
Statistical Thresholding
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/23419

id CONICETDig_dd8754990766fd0480c313c4b987c572
oai_identifier_str oai:ri.conicet.gov.ar:11336/23419
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Enhanced Sparse Bayesian Learning via Statistical Thresholding for Signals in Structured NoiseHurtado, MartinMuravchik, Carlos HoracioNehorai, AryeBayesian EstimationConstant False Alarm Rate (Cfar)Probabilistic FrameworkRadarRadar DetectionSparse ModelSparse Signal ReconstructionStatistical Thresholdinghttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In this paper we address the problem of sparse signal reconstruction. We propose a new algorithm that determines the signal support applying statistical thresholding to accept the active components of the model. This adaptive decision test is integrated into the sparse Bayesian learning method, improving its accuracy and reducing convergence time. Moreover, we extend the formulation to accept multiple measurement sequences of signal contaminated by structured noise in addition to white noise. We also develop analytical expressions to evaluate the algorithm estimation error as a function of the problem sparsity and indeterminacy. By simulations, we compare the performance of the proposed algorithm with respect to other existing methods. We show a practical application processing real data of a polarimetric radar to separate the target signal from the clutter.Fil: Hurtado, Martin. Universidad Nacional de La Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Muravchik, Carlos Horacio. Universidad Nacional de La Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Nehorai, Arye. Washington University in St. Louis; Estados UnidosInstitute of Electrical and Electronics Engineers2013-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/23419Hurtado, Martin; Muravchik, Carlos Horacio; Nehorai, Arye; Enhanced Sparse Bayesian Learning via Statistical Thresholding for Signals in Structured Noise; Institute of Electrical and Electronics Engineers; IEEE Transactions On Signal Processing; 61; 21; 11-2013; 5430-54431053-587XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1109/TSP.2013.2278811info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/6581884/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:19Zoai:ri.conicet.gov.ar:11336/23419instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:19.925CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Enhanced Sparse Bayesian Learning via Statistical Thresholding for Signals in Structured Noise
title Enhanced Sparse Bayesian Learning via Statistical Thresholding for Signals in Structured Noise
spellingShingle Enhanced Sparse Bayesian Learning via Statistical Thresholding for Signals in Structured Noise
Hurtado, Martin
Bayesian Estimation
Constant False Alarm Rate (Cfar)
Probabilistic Framework
Radar
Radar Detection
Sparse Model
Sparse Signal Reconstruction
Statistical Thresholding
title_short Enhanced Sparse Bayesian Learning via Statistical Thresholding for Signals in Structured Noise
title_full Enhanced Sparse Bayesian Learning via Statistical Thresholding for Signals in Structured Noise
title_fullStr Enhanced Sparse Bayesian Learning via Statistical Thresholding for Signals in Structured Noise
title_full_unstemmed Enhanced Sparse Bayesian Learning via Statistical Thresholding for Signals in Structured Noise
title_sort Enhanced Sparse Bayesian Learning via Statistical Thresholding for Signals in Structured Noise
dc.creator.none.fl_str_mv Hurtado, Martin
Muravchik, Carlos Horacio
Nehorai, Arye
author Hurtado, Martin
author_facet Hurtado, Martin
Muravchik, Carlos Horacio
Nehorai, Arye
author_role author
author2 Muravchik, Carlos Horacio
Nehorai, Arye
author2_role author
author
dc.subject.none.fl_str_mv Bayesian Estimation
Constant False Alarm Rate (Cfar)
Probabilistic Framework
Radar
Radar Detection
Sparse Model
Sparse Signal Reconstruction
Statistical Thresholding
topic Bayesian Estimation
Constant False Alarm Rate (Cfar)
Probabilistic Framework
Radar
Radar Detection
Sparse Model
Sparse Signal Reconstruction
Statistical Thresholding
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv In this paper we address the problem of sparse signal reconstruction. We propose a new algorithm that determines the signal support applying statistical thresholding to accept the active components of the model. This adaptive decision test is integrated into the sparse Bayesian learning method, improving its accuracy and reducing convergence time. Moreover, we extend the formulation to accept multiple measurement sequences of signal contaminated by structured noise in addition to white noise. We also develop analytical expressions to evaluate the algorithm estimation error as a function of the problem sparsity and indeterminacy. By simulations, we compare the performance of the proposed algorithm with respect to other existing methods. We show a practical application processing real data of a polarimetric radar to separate the target signal from the clutter.
Fil: Hurtado, Martin. Universidad Nacional de La Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Muravchik, Carlos Horacio. Universidad Nacional de La Plata. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Nehorai, Arye. Washington University in St. Louis; Estados Unidos
description In this paper we address the problem of sparse signal reconstruction. We propose a new algorithm that determines the signal support applying statistical thresholding to accept the active components of the model. This adaptive decision test is integrated into the sparse Bayesian learning method, improving its accuracy and reducing convergence time. Moreover, we extend the formulation to accept multiple measurement sequences of signal contaminated by structured noise in addition to white noise. We also develop analytical expressions to evaluate the algorithm estimation error as a function of the problem sparsity and indeterminacy. By simulations, we compare the performance of the proposed algorithm with respect to other existing methods. We show a practical application processing real data of a polarimetric radar to separate the target signal from the clutter.
publishDate 2013
dc.date.none.fl_str_mv 2013-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/23419
Hurtado, Martin; Muravchik, Carlos Horacio; Nehorai, Arye; Enhanced Sparse Bayesian Learning via Statistical Thresholding for Signals in Structured Noise; Institute of Electrical and Electronics Engineers; IEEE Transactions On Signal Processing; 61; 21; 11-2013; 5430-5443
1053-587X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/23419
identifier_str_mv Hurtado, Martin; Muravchik, Carlos Horacio; Nehorai, Arye; Enhanced Sparse Bayesian Learning via Statistical Thresholding for Signals in Structured Noise; Institute of Electrical and Electronics Engineers; IEEE Transactions On Signal Processing; 61; 21; 11-2013; 5430-5443
1053-587X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1109/TSP.2013.2278811
info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/6581884/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268967119355904
score 13.13397