Source localization of epileptic spikes using Multiple Sparse Priors
- Autores
- Fernandez Corazza, Mariano; Feng, Rui; Ma, Chengxin; Hu, Jie; Pan, Li; Luu, Phan; Tucker, Don
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Objective: To evaluate epileptic source estimation using multiple sparse priors (MSP) inverse method and high-resolution, individual electrical head models. Methods: Accurate source localization is dependent on accurate electrical head models and appropriate inverse solvers. Using high-resolution, individual electrical head models in fifteen epilepsy patients, with surgical resection and clinical outcome as criteria for accuracy, performance of MSP method was compared against standardized low-resolution brain electromagnetic tomography (sLORETA) and coherent maximum entropy on the mean (cMEM) methods. Results: The MSP method performed similarly to the sLORETA method and slightly better than the cMEM method in terms of success rate. The MSP and cMEM methods were more focal than sLORETA with the advantage of not requiring an arbitrary selection of a hyperparameter or thresholding of reconstructed current density values to determine focus. MSP and cMEM methods were better than sLORETA in terms of spatial dispersion. Conclusions: Results suggest that the three methods are complementary and could be used together. In practice, the MSP method will be easier to use and interpret compared to sLORETA, and slightly more accurate and faster than the cMEM method. Significance: Source localization of interictal spikes from dense-array electroencephalography data has been shown to be a reliable marker of epileptic foci and useful for pre-surgical planning. The advantages of MSP make it a useful complement to other inverse solvers in clinical practice.
Fil: Fernandez Corazza, Mariano. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina
Fil: Feng, Rui. Huashan Hospital; China
Fil: Ma, Chengxin. Huashan Hospital; China
Fil: Hu, Jie. Huashan Hospital; China
Fil: Pan, Li. Huashan Hospital; China
Fil: Luu, Phan. Brain Electrophysiology Laboratory Company; Estados Unidos. Huashan Hospital; China
Fil: Tucker, Don. University of Oregon; Estados Unidos. Brain Electrophysiology Laboratory Company; Estados Unidos - Materia
-
ELECTROENCEPHALOGRAPHY (EEG)
EPILEPSY
SOURCE LOCALIZATION
BAYESIAN
MULTIPLE SPARSE PRIORS
SLORETA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/173752
Ver los metadatos del registro completo
id |
CONICETDig_ed25fe29dabc41700f39bd0e1284b2ff |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/173752 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Source localization of epileptic spikes using Multiple Sparse PriorsFernandez Corazza, MarianoFeng, RuiMa, ChengxinHu, JiePan, LiLuu, PhanTucker, DonELECTROENCEPHALOGRAPHY (EEG)EPILEPSYSOURCE LOCALIZATIONBAYESIANMULTIPLE SPARSE PRIORSSLORETAhttps://purl.org/becyt/ford/2.6https://purl.org/becyt/ford/2Objective: To evaluate epileptic source estimation using multiple sparse priors (MSP) inverse method and high-resolution, individual electrical head models. Methods: Accurate source localization is dependent on accurate electrical head models and appropriate inverse solvers. Using high-resolution, individual electrical head models in fifteen epilepsy patients, with surgical resection and clinical outcome as criteria for accuracy, performance of MSP method was compared against standardized low-resolution brain electromagnetic tomography (sLORETA) and coherent maximum entropy on the mean (cMEM) methods. Results: The MSP method performed similarly to the sLORETA method and slightly better than the cMEM method in terms of success rate. The MSP and cMEM methods were more focal than sLORETA with the advantage of not requiring an arbitrary selection of a hyperparameter or thresholding of reconstructed current density values to determine focus. MSP and cMEM methods were better than sLORETA in terms of spatial dispersion. Conclusions: Results suggest that the three methods are complementary and could be used together. In practice, the MSP method will be easier to use and interpret compared to sLORETA, and slightly more accurate and faster than the cMEM method. Significance: Source localization of interictal spikes from dense-array electroencephalography data has been shown to be a reliable marker of epileptic foci and useful for pre-surgical planning. The advantages of MSP make it a useful complement to other inverse solvers in clinical practice.Fil: Fernandez Corazza, Mariano. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; ArgentinaFil: Feng, Rui. Huashan Hospital; ChinaFil: Ma, Chengxin. Huashan Hospital; ChinaFil: Hu, Jie. Huashan Hospital; ChinaFil: Pan, Li. Huashan Hospital; ChinaFil: Luu, Phan. Brain Electrophysiology Laboratory Company; Estados Unidos. Huashan Hospital; ChinaFil: Tucker, Don. University of Oregon; Estados Unidos. Brain Electrophysiology Laboratory Company; Estados UnidosElsevier Science2021-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/173752Fernandez Corazza, Mariano; Feng, Rui; Ma, Chengxin; Hu, Jie; Pan, Li; et al.; Source localization of epileptic spikes using Multiple Sparse Priors; Elsevier Science; Clinical Neurophysiology; 132; 2; 2-2021; 586-5971388-2457CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.clinph.2020.10.030info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1388245720305745info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:01:17Zoai:ri.conicet.gov.ar:11336/173752instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:01:17.344CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Source localization of epileptic spikes using Multiple Sparse Priors |
title |
Source localization of epileptic spikes using Multiple Sparse Priors |
spellingShingle |
Source localization of epileptic spikes using Multiple Sparse Priors Fernandez Corazza, Mariano ELECTROENCEPHALOGRAPHY (EEG) EPILEPSY SOURCE LOCALIZATION BAYESIAN MULTIPLE SPARSE PRIORS SLORETA |
title_short |
Source localization of epileptic spikes using Multiple Sparse Priors |
title_full |
Source localization of epileptic spikes using Multiple Sparse Priors |
title_fullStr |
Source localization of epileptic spikes using Multiple Sparse Priors |
title_full_unstemmed |
Source localization of epileptic spikes using Multiple Sparse Priors |
title_sort |
Source localization of epileptic spikes using Multiple Sparse Priors |
dc.creator.none.fl_str_mv |
Fernandez Corazza, Mariano Feng, Rui Ma, Chengxin Hu, Jie Pan, Li Luu, Phan Tucker, Don |
author |
Fernandez Corazza, Mariano |
author_facet |
Fernandez Corazza, Mariano Feng, Rui Ma, Chengxin Hu, Jie Pan, Li Luu, Phan Tucker, Don |
author_role |
author |
author2 |
Feng, Rui Ma, Chengxin Hu, Jie Pan, Li Luu, Phan Tucker, Don |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
ELECTROENCEPHALOGRAPHY (EEG) EPILEPSY SOURCE LOCALIZATION BAYESIAN MULTIPLE SPARSE PRIORS SLORETA |
topic |
ELECTROENCEPHALOGRAPHY (EEG) EPILEPSY SOURCE LOCALIZATION BAYESIAN MULTIPLE SPARSE PRIORS SLORETA |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.6 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Objective: To evaluate epileptic source estimation using multiple sparse priors (MSP) inverse method and high-resolution, individual electrical head models. Methods: Accurate source localization is dependent on accurate electrical head models and appropriate inverse solvers. Using high-resolution, individual electrical head models in fifteen epilepsy patients, with surgical resection and clinical outcome as criteria for accuracy, performance of MSP method was compared against standardized low-resolution brain electromagnetic tomography (sLORETA) and coherent maximum entropy on the mean (cMEM) methods. Results: The MSP method performed similarly to the sLORETA method and slightly better than the cMEM method in terms of success rate. The MSP and cMEM methods were more focal than sLORETA with the advantage of not requiring an arbitrary selection of a hyperparameter or thresholding of reconstructed current density values to determine focus. MSP and cMEM methods were better than sLORETA in terms of spatial dispersion. Conclusions: Results suggest that the three methods are complementary and could be used together. In practice, the MSP method will be easier to use and interpret compared to sLORETA, and slightly more accurate and faster than the cMEM method. Significance: Source localization of interictal spikes from dense-array electroencephalography data has been shown to be a reliable marker of epileptic foci and useful for pre-surgical planning. The advantages of MSP make it a useful complement to other inverse solvers in clinical practice. Fil: Fernandez Corazza, Mariano. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina Fil: Feng, Rui. Huashan Hospital; China Fil: Ma, Chengxin. Huashan Hospital; China Fil: Hu, Jie. Huashan Hospital; China Fil: Pan, Li. Huashan Hospital; China Fil: Luu, Phan. Brain Electrophysiology Laboratory Company; Estados Unidos. Huashan Hospital; China Fil: Tucker, Don. University of Oregon; Estados Unidos. Brain Electrophysiology Laboratory Company; Estados Unidos |
description |
Objective: To evaluate epileptic source estimation using multiple sparse priors (MSP) inverse method and high-resolution, individual electrical head models. Methods: Accurate source localization is dependent on accurate electrical head models and appropriate inverse solvers. Using high-resolution, individual electrical head models in fifteen epilepsy patients, with surgical resection and clinical outcome as criteria for accuracy, performance of MSP method was compared against standardized low-resolution brain electromagnetic tomography (sLORETA) and coherent maximum entropy on the mean (cMEM) methods. Results: The MSP method performed similarly to the sLORETA method and slightly better than the cMEM method in terms of success rate. The MSP and cMEM methods were more focal than sLORETA with the advantage of not requiring an arbitrary selection of a hyperparameter or thresholding of reconstructed current density values to determine focus. MSP and cMEM methods were better than sLORETA in terms of spatial dispersion. Conclusions: Results suggest that the three methods are complementary and could be used together. In practice, the MSP method will be easier to use and interpret compared to sLORETA, and slightly more accurate and faster than the cMEM method. Significance: Source localization of interictal spikes from dense-array electroencephalography data has been shown to be a reliable marker of epileptic foci and useful for pre-surgical planning. The advantages of MSP make it a useful complement to other inverse solvers in clinical practice. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/173752 Fernandez Corazza, Mariano; Feng, Rui; Ma, Chengxin; Hu, Jie; Pan, Li; et al.; Source localization of epileptic spikes using Multiple Sparse Priors; Elsevier Science; Clinical Neurophysiology; 132; 2; 2-2021; 586-597 1388-2457 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/173752 |
identifier_str_mv |
Fernandez Corazza, Mariano; Feng, Rui; Ma, Chengxin; Hu, Jie; Pan, Li; et al.; Source localization of epileptic spikes using Multiple Sparse Priors; Elsevier Science; Clinical Neurophysiology; 132; 2; 2-2021; 586-597 1388-2457 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.clinph.2020.10.030 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1388245720305745 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842979938399944704 |
score |
12.48226 |