A Pattern Recognition Approach to Spasmodic Dysphonia and Muscle Tension Dysphonia Automatic Classification

Autores
Schlotthauer, Gaston; Torres, Maria Eugenia; Jackson Menaldi, María Cristina
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Spasmodic dysphonia (SD) and muscle tension dysphonia (MTD) are two voice disorders that present similar characteristics. Usually, they can be differentiated only by experienced voice clinicians. There are many reasons that support the idea that SD is a neurological disease, requiring surgical treatments or, more usually, laryngeal botulinum toxin A injections as a therapeutic option. On the other hand, MTD is a functional disorder correctable with voice therapy. The importance of a correct diagnosis of these two disorders is critical at the treatment-selection moment. In this article, we present and compare the results of neural network and support vector machine-based methods that can help the clinicians to confirm their diagnosis. As a preliminary approach to the problem, we used only a sustained vowel /a/ to extract eight acoustic parameters. Then, a pattern recognition algorithm classifies the voice as normal, SD, or MTD. For comparison with previous works, we also separated the voices into normal and pathological (SD and MTD) voices with the methods proposed here. The results overcome the best classification rates between normal and pathological voices that have been previously reported, and demonstrate that our methods are very effective in distinguishing between MTD and SD.
Fil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Torres, Maria Eugenia. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Jackson Menaldi, María Cristina. Wayne State University (wayne State University); Estados Unidos
Materia
MUSCLE TENSION DYSPHONIA
NEURAL NETWORKS
SPASMODIC DYSPHONIA
SUPPORT VECTOR MACHINES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/188891

id CONICETDig_dd64c0bfa3b045552e36f5ef4f73759a
oai_identifier_str oai:ri.conicet.gov.ar:11336/188891
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A Pattern Recognition Approach to Spasmodic Dysphonia and Muscle Tension Dysphonia Automatic ClassificationSchlotthauer, GastonTorres, Maria EugeniaJackson Menaldi, María CristinaMUSCLE TENSION DYSPHONIANEURAL NETWORKSSPASMODIC DYSPHONIASUPPORT VECTOR MACHINEShttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Spasmodic dysphonia (SD) and muscle tension dysphonia (MTD) are two voice disorders that present similar characteristics. Usually, they can be differentiated only by experienced voice clinicians. There are many reasons that support the idea that SD is a neurological disease, requiring surgical treatments or, more usually, laryngeal botulinum toxin A injections as a therapeutic option. On the other hand, MTD is a functional disorder correctable with voice therapy. The importance of a correct diagnosis of these two disorders is critical at the treatment-selection moment. In this article, we present and compare the results of neural network and support vector machine-based methods that can help the clinicians to confirm their diagnosis. As a preliminary approach to the problem, we used only a sustained vowel /a/ to extract eight acoustic parameters. Then, a pattern recognition algorithm classifies the voice as normal, SD, or MTD. For comparison with previous works, we also separated the voices into normal and pathological (SD and MTD) voices with the methods proposed here. The results overcome the best classification rates between normal and pathological voices that have been previously reported, and demonstrate that our methods are very effective in distinguishing between MTD and SD.Fil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Torres, Maria Eugenia. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Jackson Menaldi, María Cristina. Wayne State University (wayne State University); Estados UnidosMosby-Elsevier2010-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/188891Schlotthauer, Gaston; Torres, Maria Eugenia; Jackson Menaldi, María Cristina; A Pattern Recognition Approach to Spasmodic Dysphonia and Muscle Tension Dysphonia Automatic Classification; Mosby-Elsevier; Journal Of Voice : Official Journal Of The Voice Foundation.; 24; 3; 5-2010; 346-3530892-1997CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0892199708001719info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jvoice.2008.10.007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:06:30Zoai:ri.conicet.gov.ar:11336/188891instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:06:31.206CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A Pattern Recognition Approach to Spasmodic Dysphonia and Muscle Tension Dysphonia Automatic Classification
title A Pattern Recognition Approach to Spasmodic Dysphonia and Muscle Tension Dysphonia Automatic Classification
spellingShingle A Pattern Recognition Approach to Spasmodic Dysphonia and Muscle Tension Dysphonia Automatic Classification
Schlotthauer, Gaston
MUSCLE TENSION DYSPHONIA
NEURAL NETWORKS
SPASMODIC DYSPHONIA
SUPPORT VECTOR MACHINES
title_short A Pattern Recognition Approach to Spasmodic Dysphonia and Muscle Tension Dysphonia Automatic Classification
title_full A Pattern Recognition Approach to Spasmodic Dysphonia and Muscle Tension Dysphonia Automatic Classification
title_fullStr A Pattern Recognition Approach to Spasmodic Dysphonia and Muscle Tension Dysphonia Automatic Classification
title_full_unstemmed A Pattern Recognition Approach to Spasmodic Dysphonia and Muscle Tension Dysphonia Automatic Classification
title_sort A Pattern Recognition Approach to Spasmodic Dysphonia and Muscle Tension Dysphonia Automatic Classification
dc.creator.none.fl_str_mv Schlotthauer, Gaston
Torres, Maria Eugenia
Jackson Menaldi, María Cristina
author Schlotthauer, Gaston
author_facet Schlotthauer, Gaston
Torres, Maria Eugenia
Jackson Menaldi, María Cristina
author_role author
author2 Torres, Maria Eugenia
Jackson Menaldi, María Cristina
author2_role author
author
dc.subject.none.fl_str_mv MUSCLE TENSION DYSPHONIA
NEURAL NETWORKS
SPASMODIC DYSPHONIA
SUPPORT VECTOR MACHINES
topic MUSCLE TENSION DYSPHONIA
NEURAL NETWORKS
SPASMODIC DYSPHONIA
SUPPORT VECTOR MACHINES
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.11
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Spasmodic dysphonia (SD) and muscle tension dysphonia (MTD) are two voice disorders that present similar characteristics. Usually, they can be differentiated only by experienced voice clinicians. There are many reasons that support the idea that SD is a neurological disease, requiring surgical treatments or, more usually, laryngeal botulinum toxin A injections as a therapeutic option. On the other hand, MTD is a functional disorder correctable with voice therapy. The importance of a correct diagnosis of these two disorders is critical at the treatment-selection moment. In this article, we present and compare the results of neural network and support vector machine-based methods that can help the clinicians to confirm their diagnosis. As a preliminary approach to the problem, we used only a sustained vowel /a/ to extract eight acoustic parameters. Then, a pattern recognition algorithm classifies the voice as normal, SD, or MTD. For comparison with previous works, we also separated the voices into normal and pathological (SD and MTD) voices with the methods proposed here. The results overcome the best classification rates between normal and pathological voices that have been previously reported, and demonstrate that our methods are very effective in distinguishing between MTD and SD.
Fil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Torres, Maria Eugenia. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Jackson Menaldi, María Cristina. Wayne State University (wayne State University); Estados Unidos
description Spasmodic dysphonia (SD) and muscle tension dysphonia (MTD) are two voice disorders that present similar characteristics. Usually, they can be differentiated only by experienced voice clinicians. There are many reasons that support the idea that SD is a neurological disease, requiring surgical treatments or, more usually, laryngeal botulinum toxin A injections as a therapeutic option. On the other hand, MTD is a functional disorder correctable with voice therapy. The importance of a correct diagnosis of these two disorders is critical at the treatment-selection moment. In this article, we present and compare the results of neural network and support vector machine-based methods that can help the clinicians to confirm their diagnosis. As a preliminary approach to the problem, we used only a sustained vowel /a/ to extract eight acoustic parameters. Then, a pattern recognition algorithm classifies the voice as normal, SD, or MTD. For comparison with previous works, we also separated the voices into normal and pathological (SD and MTD) voices with the methods proposed here. The results overcome the best classification rates between normal and pathological voices that have been previously reported, and demonstrate that our methods are very effective in distinguishing between MTD and SD.
publishDate 2010
dc.date.none.fl_str_mv 2010-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/188891
Schlotthauer, Gaston; Torres, Maria Eugenia; Jackson Menaldi, María Cristina; A Pattern Recognition Approach to Spasmodic Dysphonia and Muscle Tension Dysphonia Automatic Classification; Mosby-Elsevier; Journal Of Voice : Official Journal Of The Voice Foundation.; 24; 3; 5-2010; 346-353
0892-1997
CONICET Digital
CONICET
url http://hdl.handle.net/11336/188891
identifier_str_mv Schlotthauer, Gaston; Torres, Maria Eugenia; Jackson Menaldi, María Cristina; A Pattern Recognition Approach to Spasmodic Dysphonia and Muscle Tension Dysphonia Automatic Classification; Mosby-Elsevier; Journal Of Voice : Official Journal Of The Voice Foundation.; 24; 3; 5-2010; 346-353
0892-1997
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0892199708001719
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jvoice.2008.10.007
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Mosby-Elsevier
publisher.none.fl_str_mv Mosby-Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781364697825280
score 12.982451