A Pattern Recognition Approach to Spasmodic Dysphonia and Muscle Tension Dysphonia Automatic Classification
- Autores
- Schlotthauer, Gaston; Torres, Maria Eugenia; Jackson Menaldi, María Cristina
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Spasmodic dysphonia (SD) and muscle tension dysphonia (MTD) are two voice disorders that present similar characteristics. Usually, they can be differentiated only by experienced voice clinicians. There are many reasons that support the idea that SD is a neurological disease, requiring surgical treatments or, more usually, laryngeal botulinum toxin A injections as a therapeutic option. On the other hand, MTD is a functional disorder correctable with voice therapy. The importance of a correct diagnosis of these two disorders is critical at the treatment-selection moment. In this article, we present and compare the results of neural network and support vector machine-based methods that can help the clinicians to confirm their diagnosis. As a preliminary approach to the problem, we used only a sustained vowel /a/ to extract eight acoustic parameters. Then, a pattern recognition algorithm classifies the voice as normal, SD, or MTD. For comparison with previous works, we also separated the voices into normal and pathological (SD and MTD) voices with the methods proposed here. The results overcome the best classification rates between normal and pathological voices that have been previously reported, and demonstrate that our methods are very effective in distinguishing between MTD and SD.
Fil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Torres, Maria Eugenia. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Jackson Menaldi, María Cristina. Wayne State University (wayne State University); Estados Unidos - Materia
-
MUSCLE TENSION DYSPHONIA
NEURAL NETWORKS
SPASMODIC DYSPHONIA
SUPPORT VECTOR MACHINES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/188891
Ver los metadatos del registro completo
| id |
CONICETDig_dd64c0bfa3b045552e36f5ef4f73759a |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/188891 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
A Pattern Recognition Approach to Spasmodic Dysphonia and Muscle Tension Dysphonia Automatic ClassificationSchlotthauer, GastonTorres, Maria EugeniaJackson Menaldi, María CristinaMUSCLE TENSION DYSPHONIANEURAL NETWORKSSPASMODIC DYSPHONIASUPPORT VECTOR MACHINEShttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Spasmodic dysphonia (SD) and muscle tension dysphonia (MTD) are two voice disorders that present similar characteristics. Usually, they can be differentiated only by experienced voice clinicians. There are many reasons that support the idea that SD is a neurological disease, requiring surgical treatments or, more usually, laryngeal botulinum toxin A injections as a therapeutic option. On the other hand, MTD is a functional disorder correctable with voice therapy. The importance of a correct diagnosis of these two disorders is critical at the treatment-selection moment. In this article, we present and compare the results of neural network and support vector machine-based methods that can help the clinicians to confirm their diagnosis. As a preliminary approach to the problem, we used only a sustained vowel /a/ to extract eight acoustic parameters. Then, a pattern recognition algorithm classifies the voice as normal, SD, or MTD. For comparison with previous works, we also separated the voices into normal and pathological (SD and MTD) voices with the methods proposed here. The results overcome the best classification rates between normal and pathological voices that have been previously reported, and demonstrate that our methods are very effective in distinguishing between MTD and SD.Fil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Torres, Maria Eugenia. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Jackson Menaldi, María Cristina. Wayne State University (wayne State University); Estados UnidosMosby-Elsevier2010-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/188891Schlotthauer, Gaston; Torres, Maria Eugenia; Jackson Menaldi, María Cristina; A Pattern Recognition Approach to Spasmodic Dysphonia and Muscle Tension Dysphonia Automatic Classification; Mosby-Elsevier; Journal Of Voice : Official Journal Of The Voice Foundation.; 24; 3; 5-2010; 346-3530892-1997CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0892199708001719info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jvoice.2008.10.007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:06:30Zoai:ri.conicet.gov.ar:11336/188891instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:06:31.206CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
A Pattern Recognition Approach to Spasmodic Dysphonia and Muscle Tension Dysphonia Automatic Classification |
| title |
A Pattern Recognition Approach to Spasmodic Dysphonia and Muscle Tension Dysphonia Automatic Classification |
| spellingShingle |
A Pattern Recognition Approach to Spasmodic Dysphonia and Muscle Tension Dysphonia Automatic Classification Schlotthauer, Gaston MUSCLE TENSION DYSPHONIA NEURAL NETWORKS SPASMODIC DYSPHONIA SUPPORT VECTOR MACHINES |
| title_short |
A Pattern Recognition Approach to Spasmodic Dysphonia and Muscle Tension Dysphonia Automatic Classification |
| title_full |
A Pattern Recognition Approach to Spasmodic Dysphonia and Muscle Tension Dysphonia Automatic Classification |
| title_fullStr |
A Pattern Recognition Approach to Spasmodic Dysphonia and Muscle Tension Dysphonia Automatic Classification |
| title_full_unstemmed |
A Pattern Recognition Approach to Spasmodic Dysphonia and Muscle Tension Dysphonia Automatic Classification |
| title_sort |
A Pattern Recognition Approach to Spasmodic Dysphonia and Muscle Tension Dysphonia Automatic Classification |
| dc.creator.none.fl_str_mv |
Schlotthauer, Gaston Torres, Maria Eugenia Jackson Menaldi, María Cristina |
| author |
Schlotthauer, Gaston |
| author_facet |
Schlotthauer, Gaston Torres, Maria Eugenia Jackson Menaldi, María Cristina |
| author_role |
author |
| author2 |
Torres, Maria Eugenia Jackson Menaldi, María Cristina |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
MUSCLE TENSION DYSPHONIA NEURAL NETWORKS SPASMODIC DYSPHONIA SUPPORT VECTOR MACHINES |
| topic |
MUSCLE TENSION DYSPHONIA NEURAL NETWORKS SPASMODIC DYSPHONIA SUPPORT VECTOR MACHINES |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
Spasmodic dysphonia (SD) and muscle tension dysphonia (MTD) are two voice disorders that present similar characteristics. Usually, they can be differentiated only by experienced voice clinicians. There are many reasons that support the idea that SD is a neurological disease, requiring surgical treatments or, more usually, laryngeal botulinum toxin A injections as a therapeutic option. On the other hand, MTD is a functional disorder correctable with voice therapy. The importance of a correct diagnosis of these two disorders is critical at the treatment-selection moment. In this article, we present and compare the results of neural network and support vector machine-based methods that can help the clinicians to confirm their diagnosis. As a preliminary approach to the problem, we used only a sustained vowel /a/ to extract eight acoustic parameters. Then, a pattern recognition algorithm classifies the voice as normal, SD, or MTD. For comparison with previous works, we also separated the voices into normal and pathological (SD and MTD) voices with the methods proposed here. The results overcome the best classification rates between normal and pathological voices that have been previously reported, and demonstrate that our methods are very effective in distinguishing between MTD and SD. Fil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Torres, Maria Eugenia. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Jackson Menaldi, María Cristina. Wayne State University (wayne State University); Estados Unidos |
| description |
Spasmodic dysphonia (SD) and muscle tension dysphonia (MTD) are two voice disorders that present similar characteristics. Usually, they can be differentiated only by experienced voice clinicians. There are many reasons that support the idea that SD is a neurological disease, requiring surgical treatments or, more usually, laryngeal botulinum toxin A injections as a therapeutic option. On the other hand, MTD is a functional disorder correctable with voice therapy. The importance of a correct diagnosis of these two disorders is critical at the treatment-selection moment. In this article, we present and compare the results of neural network and support vector machine-based methods that can help the clinicians to confirm their diagnosis. As a preliminary approach to the problem, we used only a sustained vowel /a/ to extract eight acoustic parameters. Then, a pattern recognition algorithm classifies the voice as normal, SD, or MTD. For comparison with previous works, we also separated the voices into normal and pathological (SD and MTD) voices with the methods proposed here. The results overcome the best classification rates between normal and pathological voices that have been previously reported, and demonstrate that our methods are very effective in distinguishing between MTD and SD. |
| publishDate |
2010 |
| dc.date.none.fl_str_mv |
2010-05 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/188891 Schlotthauer, Gaston; Torres, Maria Eugenia; Jackson Menaldi, María Cristina; A Pattern Recognition Approach to Spasmodic Dysphonia and Muscle Tension Dysphonia Automatic Classification; Mosby-Elsevier; Journal Of Voice : Official Journal Of The Voice Foundation.; 24; 3; 5-2010; 346-353 0892-1997 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/188891 |
| identifier_str_mv |
Schlotthauer, Gaston; Torres, Maria Eugenia; Jackson Menaldi, María Cristina; A Pattern Recognition Approach to Spasmodic Dysphonia and Muscle Tension Dysphonia Automatic Classification; Mosby-Elsevier; Journal Of Voice : Official Journal Of The Voice Foundation.; 24; 3; 5-2010; 346-353 0892-1997 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0892199708001719 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jvoice.2008.10.007 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Mosby-Elsevier |
| publisher.none.fl_str_mv |
Mosby-Elsevier |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781364697825280 |
| score |
12.982451 |