Orlicz boundedness for certain classical operators
- Autores
- Harboure, Eleonor Ofelia; Salinas, Oscar Mario; Viviani, Beatriz Eleonora
- Año de publicación
- 2002
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let ɸ and ψ be functions defined on [0,∞) taking the value zero at zero and with non-negative continuous derivative. Under very mild extra assumptions we find necessary and sufficient conditions for the fractional maximal operator M∞Ω, associated to an open bounded set Ω, to be bounded from the Orlicz space Lψ(Ω) into Lɸ(Ω), 0 ≤ α < n. For functions ɸ of finite upper type these results can be extended to the Hilbert transform f on the one-dimensional torus and to the fractional integral operator IαΩ, 0 < α < n. Since these operators are linear and self-adjoint we get, by duality, boundedness results near infinity, deriving in this way some generalized Trudinger type inequalities.
Fil: Harboure, Eleonor Ofelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Salinas, Oscar Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina - Materia
-
BOUNDEDNESS
FRACTIONAL INTEGRAL
HILBERT TRANSFORM
MAXIMAL FUNCTION
ORLICZ SPACES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/100607
Ver los metadatos del registro completo
| id |
CONICETDig_290cd890b5093d1b33c6cc2846c7e85b |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/100607 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Orlicz boundedness for certain classical operatorsHarboure, Eleonor OfeliaSalinas, Oscar MarioViviani, Beatriz EleonoraBOUNDEDNESSFRACTIONAL INTEGRALHILBERT TRANSFORMMAXIMAL FUNCTIONORLICZ SPACEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let ɸ and ψ be functions defined on [0,∞) taking the value zero at zero and with non-negative continuous derivative. Under very mild extra assumptions we find necessary and sufficient conditions for the fractional maximal operator M∞Ω, associated to an open bounded set Ω, to be bounded from the Orlicz space Lψ(Ω) into Lɸ(Ω), 0 ≤ α < n. For functions ɸ of finite upper type these results can be extended to the Hilbert transform f on the one-dimensional torus and to the fractional integral operator IαΩ, 0 < α < n. Since these operators are linear and self-adjoint we get, by duality, boundedness results near infinity, deriving in this way some generalized Trudinger type inequalities.Fil: Harboure, Eleonor Ofelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Salinas, Oscar Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaInstitute of Mathematics - Polish Academy of Sciencies2002-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100607Harboure, Eleonor Ofelia; Salinas, Oscar Mario; Viviani, Beatriz Eleonora; Orlicz boundedness for certain classical operators; Institute of Mathematics - Polish Academy of Sciencies; Colloquium Mathematicum; 91; 2; 6-2002; 263-2820010-1354CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4064/cm91-2-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:45:27Zoai:ri.conicet.gov.ar:11336/100607instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:45:27.504CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Orlicz boundedness for certain classical operators |
| title |
Orlicz boundedness for certain classical operators |
| spellingShingle |
Orlicz boundedness for certain classical operators Harboure, Eleonor Ofelia BOUNDEDNESS FRACTIONAL INTEGRAL HILBERT TRANSFORM MAXIMAL FUNCTION ORLICZ SPACES |
| title_short |
Orlicz boundedness for certain classical operators |
| title_full |
Orlicz boundedness for certain classical operators |
| title_fullStr |
Orlicz boundedness for certain classical operators |
| title_full_unstemmed |
Orlicz boundedness for certain classical operators |
| title_sort |
Orlicz boundedness for certain classical operators |
| dc.creator.none.fl_str_mv |
Harboure, Eleonor Ofelia Salinas, Oscar Mario Viviani, Beatriz Eleonora |
| author |
Harboure, Eleonor Ofelia |
| author_facet |
Harboure, Eleonor Ofelia Salinas, Oscar Mario Viviani, Beatriz Eleonora |
| author_role |
author |
| author2 |
Salinas, Oscar Mario Viviani, Beatriz Eleonora |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
BOUNDEDNESS FRACTIONAL INTEGRAL HILBERT TRANSFORM MAXIMAL FUNCTION ORLICZ SPACES |
| topic |
BOUNDEDNESS FRACTIONAL INTEGRAL HILBERT TRANSFORM MAXIMAL FUNCTION ORLICZ SPACES |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Let ɸ and ψ be functions defined on [0,∞) taking the value zero at zero and with non-negative continuous derivative. Under very mild extra assumptions we find necessary and sufficient conditions for the fractional maximal operator M∞Ω, associated to an open bounded set Ω, to be bounded from the Orlicz space Lψ(Ω) into Lɸ(Ω), 0 ≤ α < n. For functions ɸ of finite upper type these results can be extended to the Hilbert transform f on the one-dimensional torus and to the fractional integral operator IαΩ, 0 < α < n. Since these operators are linear and self-adjoint we get, by duality, boundedness results near infinity, deriving in this way some generalized Trudinger type inequalities. Fil: Harboure, Eleonor Ofelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Salinas, Oscar Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Viviani, Beatriz Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina |
| description |
Let ɸ and ψ be functions defined on [0,∞) taking the value zero at zero and with non-negative continuous derivative. Under very mild extra assumptions we find necessary and sufficient conditions for the fractional maximal operator M∞Ω, associated to an open bounded set Ω, to be bounded from the Orlicz space Lψ(Ω) into Lɸ(Ω), 0 ≤ α < n. For functions ɸ of finite upper type these results can be extended to the Hilbert transform f on the one-dimensional torus and to the fractional integral operator IαΩ, 0 < α < n. Since these operators are linear and self-adjoint we get, by duality, boundedness results near infinity, deriving in this way some generalized Trudinger type inequalities. |
| publishDate |
2002 |
| dc.date.none.fl_str_mv |
2002-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/100607 Harboure, Eleonor Ofelia; Salinas, Oscar Mario; Viviani, Beatriz Eleonora; Orlicz boundedness for certain classical operators; Institute of Mathematics - Polish Academy of Sciencies; Colloquium Mathematicum; 91; 2; 6-2002; 263-282 0010-1354 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/100607 |
| identifier_str_mv |
Harboure, Eleonor Ofelia; Salinas, Oscar Mario; Viviani, Beatriz Eleonora; Orlicz boundedness for certain classical operators; Institute of Mathematics - Polish Academy of Sciencies; Colloquium Mathematicum; 91; 2; 6-2002; 263-282 0010-1354 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.4064/cm91-2-6 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Institute of Mathematics - Polish Academy of Sciencies |
| publisher.none.fl_str_mv |
Institute of Mathematics - Polish Academy of Sciencies |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597826610659328 |
| score |
13.24222 |