Integrable systems on semidirect product Lie groups
- Autores
- Capriotti, Santiago; Montani, Hugo Santos
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study integrable systems on the semidirect product of a Lie group and its Lie algebra as the representation space of the adjoint action. Regarding the tangent bundle of a Lie group as phase space endowed with this semidirect product Lie group structure, we construct a class of symplectic submanifolds equipped with a Dirac bracket on which integrable systems (in the Adler–Kostant–Symes sense) are naturally built through collective dynamics. In doing so, we address other issues such as factorization, Poisson–Lie structures and dressing actions. We show that the procedure becomes recursive for some particular Hamilton functions, giving rise to a tower of nested integrable systems.
Fil: Capriotti, Santiago. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Montani, Hugo Santos. Universidad Nacional de la Patagonia Austral. Unidad Académica Caleta Olivia. Departamento de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Integrable Systems
Adler–Kostant–Symes Method
Semidirect Product Lie Algebras - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/21691
Ver los metadatos del registro completo
id |
CONICETDig_dc64a7748748ae8ad5ec49a74b6c1886 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/21691 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Integrable systems on semidirect product Lie groupsCapriotti, SantiagoMontani, Hugo SantosIntegrable SystemsAdler–Kostant–Symes MethodSemidirect Product Lie Algebrashttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study integrable systems on the semidirect product of a Lie group and its Lie algebra as the representation space of the adjoint action. Regarding the tangent bundle of a Lie group as phase space endowed with this semidirect product Lie group structure, we construct a class of symplectic submanifolds equipped with a Dirac bracket on which integrable systems (in the Adler–Kostant–Symes sense) are naturally built through collective dynamics. In doing so, we address other issues such as factorization, Poisson–Lie structures and dressing actions. We show that the procedure becomes recursive for some particular Hamilton functions, giving rise to a tower of nested integrable systems.Fil: Capriotti, Santiago. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Montani, Hugo Santos. Universidad Nacional de la Patagonia Austral. Unidad Académica Caleta Olivia. Departamento de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaIOP Publishing2014-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/21691Capriotti, Santiago; Montani, Hugo Santos; Integrable systems on semidirect product Lie groups; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 47; 206; 5-2014; 1-231751-8113CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/1751-8121/47/20/205206/info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/47/20/205206info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:18:09Zoai:ri.conicet.gov.ar:11336/21691instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:18:09.245CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Integrable systems on semidirect product Lie groups |
title |
Integrable systems on semidirect product Lie groups |
spellingShingle |
Integrable systems on semidirect product Lie groups Capriotti, Santiago Integrable Systems Adler–Kostant–Symes Method Semidirect Product Lie Algebras |
title_short |
Integrable systems on semidirect product Lie groups |
title_full |
Integrable systems on semidirect product Lie groups |
title_fullStr |
Integrable systems on semidirect product Lie groups |
title_full_unstemmed |
Integrable systems on semidirect product Lie groups |
title_sort |
Integrable systems on semidirect product Lie groups |
dc.creator.none.fl_str_mv |
Capriotti, Santiago Montani, Hugo Santos |
author |
Capriotti, Santiago |
author_facet |
Capriotti, Santiago Montani, Hugo Santos |
author_role |
author |
author2 |
Montani, Hugo Santos |
author2_role |
author |
dc.subject.none.fl_str_mv |
Integrable Systems Adler–Kostant–Symes Method Semidirect Product Lie Algebras |
topic |
Integrable Systems Adler–Kostant–Symes Method Semidirect Product Lie Algebras |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study integrable systems on the semidirect product of a Lie group and its Lie algebra as the representation space of the adjoint action. Regarding the tangent bundle of a Lie group as phase space endowed with this semidirect product Lie group structure, we construct a class of symplectic submanifolds equipped with a Dirac bracket on which integrable systems (in the Adler–Kostant–Symes sense) are naturally built through collective dynamics. In doing so, we address other issues such as factorization, Poisson–Lie structures and dressing actions. We show that the procedure becomes recursive for some particular Hamilton functions, giving rise to a tower of nested integrable systems. Fil: Capriotti, Santiago. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Montani, Hugo Santos. Universidad Nacional de la Patagonia Austral. Unidad Académica Caleta Olivia. Departamento de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We study integrable systems on the semidirect product of a Lie group and its Lie algebra as the representation space of the adjoint action. Regarding the tangent bundle of a Lie group as phase space endowed with this semidirect product Lie group structure, we construct a class of symplectic submanifolds equipped with a Dirac bracket on which integrable systems (in the Adler–Kostant–Symes sense) are naturally built through collective dynamics. In doing so, we address other issues such as factorization, Poisson–Lie structures and dressing actions. We show that the procedure becomes recursive for some particular Hamilton functions, giving rise to a tower of nested integrable systems. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/21691 Capriotti, Santiago; Montani, Hugo Santos; Integrable systems on semidirect product Lie groups; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 47; 206; 5-2014; 1-23 1751-8113 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/21691 |
identifier_str_mv |
Capriotti, Santiago; Montani, Hugo Santos; Integrable systems on semidirect product Lie groups; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 47; 206; 5-2014; 1-23 1751-8113 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/1751-8121/47/20/205206/ info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/47/20/205206 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614140653469696 |
score |
13.070432 |