Optimal configuration for detection of gold nanoparticles in tumors using Kβ X-ray fluorescence line

Autores
Figueroa, R. G.; Santibañez, M.; Malano, Francisco Mauricio; Valente, Mauro Andres
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This study examines the increase in the capacity to detect gold nanoparticles in tumor tissue using X-rays from orthovoltage sources. The analyzed methodology considered aspects of geometry and composition in accordance with those required in real clinical treatment applications. The results show that a geometrical backscatter configuration, an incident spectral energy synthesized to optimize statistical parameters and adequate background subtraction allow for a significant increase in the signal to noise ratio (SNR) of the secondary Kβ lines. This increase is greater than those currently reported for traditional Kα lines. Furthermore, these conditions also produce an increase in detection sensitivity, less uncertainty in results and shorter exposure times. The proposed methodology was evaluated using XMI-MSIM software for the Monte Carlo simulation fluorescent response of each element. The simulation used tumors of 1-3cm3, at a depth of 1-5cm with a 0.1-1% gold nanoparticle concentration. The measurement time and the skin entrance dose by the methodology were considered for allows future quantitative surface scanning implementation.
Fil: Figueroa, R. G.. Universidad de La Frontera; Chile
Fil: Santibañez, M.. Universidad de La Frontera; Chile
Fil: Malano, Francisco Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Valente, Mauro Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Materia
Gold Nanoparticles
In Vivo Edxrf Spectrometry
Monte Carlo Simulation
Xmi-Msim
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/50503

id CONICETDig_dc4c6ac0db07b797a06b7a74982aba8d
oai_identifier_str oai:ri.conicet.gov.ar:11336/50503
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Optimal configuration for detection of gold nanoparticles in tumors using Kβ X-ray fluorescence lineFigueroa, R. G.Santibañez, M.Malano, Francisco MauricioValente, Mauro AndresGold NanoparticlesIn Vivo Edxrf SpectrometryMonte Carlo SimulationXmi-Msimhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1This study examines the increase in the capacity to detect gold nanoparticles in tumor tissue using X-rays from orthovoltage sources. The analyzed methodology considered aspects of geometry and composition in accordance with those required in real clinical treatment applications. The results show that a geometrical backscatter configuration, an incident spectral energy synthesized to optimize statistical parameters and adequate background subtraction allow for a significant increase in the signal to noise ratio (SNR) of the secondary Kβ lines. This increase is greater than those currently reported for traditional Kα lines. Furthermore, these conditions also produce an increase in detection sensitivity, less uncertainty in results and shorter exposure times. The proposed methodology was evaluated using XMI-MSIM software for the Monte Carlo simulation fluorescent response of each element. The simulation used tumors of 1-3cm3, at a depth of 1-5cm with a 0.1-1% gold nanoparticle concentration. The measurement time and the skin entrance dose by the methodology were considered for allows future quantitative surface scanning implementation.Fil: Figueroa, R. G.. Universidad de La Frontera; ChileFil: Santibañez, M.. Universidad de La Frontera; ChileFil: Malano, Francisco Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Valente, Mauro Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaPergamon-Elsevier Science Ltd2015-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/50503Figueroa, R. G.; Santibañez, M.; Malano, Francisco Mauricio; Valente, Mauro Andres; Optimal configuration for detection of gold nanoparticles in tumors using Kβ X-ray fluorescence line; Pergamon-Elsevier Science Ltd; Radiation Physics and Chemistry (Oxford); 117; 12-2015; 198-2020969-806XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.radphyschem.2015.08.017info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0969806X15300414info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:45:51Zoai:ri.conicet.gov.ar:11336/50503instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:45:51.462CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Optimal configuration for detection of gold nanoparticles in tumors using Kβ X-ray fluorescence line
title Optimal configuration for detection of gold nanoparticles in tumors using Kβ X-ray fluorescence line
spellingShingle Optimal configuration for detection of gold nanoparticles in tumors using Kβ X-ray fluorescence line
Figueroa, R. G.
Gold Nanoparticles
In Vivo Edxrf Spectrometry
Monte Carlo Simulation
Xmi-Msim
title_short Optimal configuration for detection of gold nanoparticles in tumors using Kβ X-ray fluorescence line
title_full Optimal configuration for detection of gold nanoparticles in tumors using Kβ X-ray fluorescence line
title_fullStr Optimal configuration for detection of gold nanoparticles in tumors using Kβ X-ray fluorescence line
title_full_unstemmed Optimal configuration for detection of gold nanoparticles in tumors using Kβ X-ray fluorescence line
title_sort Optimal configuration for detection of gold nanoparticles in tumors using Kβ X-ray fluorescence line
dc.creator.none.fl_str_mv Figueroa, R. G.
Santibañez, M.
Malano, Francisco Mauricio
Valente, Mauro Andres
author Figueroa, R. G.
author_facet Figueroa, R. G.
Santibañez, M.
Malano, Francisco Mauricio
Valente, Mauro Andres
author_role author
author2 Santibañez, M.
Malano, Francisco Mauricio
Valente, Mauro Andres
author2_role author
author
author
dc.subject.none.fl_str_mv Gold Nanoparticles
In Vivo Edxrf Spectrometry
Monte Carlo Simulation
Xmi-Msim
topic Gold Nanoparticles
In Vivo Edxrf Spectrometry
Monte Carlo Simulation
Xmi-Msim
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv This study examines the increase in the capacity to detect gold nanoparticles in tumor tissue using X-rays from orthovoltage sources. The analyzed methodology considered aspects of geometry and composition in accordance with those required in real clinical treatment applications. The results show that a geometrical backscatter configuration, an incident spectral energy synthesized to optimize statistical parameters and adequate background subtraction allow for a significant increase in the signal to noise ratio (SNR) of the secondary Kβ lines. This increase is greater than those currently reported for traditional Kα lines. Furthermore, these conditions also produce an increase in detection sensitivity, less uncertainty in results and shorter exposure times. The proposed methodology was evaluated using XMI-MSIM software for the Monte Carlo simulation fluorescent response of each element. The simulation used tumors of 1-3cm3, at a depth of 1-5cm with a 0.1-1% gold nanoparticle concentration. The measurement time and the skin entrance dose by the methodology were considered for allows future quantitative surface scanning implementation.
Fil: Figueroa, R. G.. Universidad de La Frontera; Chile
Fil: Santibañez, M.. Universidad de La Frontera; Chile
Fil: Malano, Francisco Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Valente, Mauro Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
description This study examines the increase in the capacity to detect gold nanoparticles in tumor tissue using X-rays from orthovoltage sources. The analyzed methodology considered aspects of geometry and composition in accordance with those required in real clinical treatment applications. The results show that a geometrical backscatter configuration, an incident spectral energy synthesized to optimize statistical parameters and adequate background subtraction allow for a significant increase in the signal to noise ratio (SNR) of the secondary Kβ lines. This increase is greater than those currently reported for traditional Kα lines. Furthermore, these conditions also produce an increase in detection sensitivity, less uncertainty in results and shorter exposure times. The proposed methodology was evaluated using XMI-MSIM software for the Monte Carlo simulation fluorescent response of each element. The simulation used tumors of 1-3cm3, at a depth of 1-5cm with a 0.1-1% gold nanoparticle concentration. The measurement time and the skin entrance dose by the methodology were considered for allows future quantitative surface scanning implementation.
publishDate 2015
dc.date.none.fl_str_mv 2015-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/50503
Figueroa, R. G.; Santibañez, M.; Malano, Francisco Mauricio; Valente, Mauro Andres; Optimal configuration for detection of gold nanoparticles in tumors using Kβ X-ray fluorescence line; Pergamon-Elsevier Science Ltd; Radiation Physics and Chemistry (Oxford); 117; 12-2015; 198-202
0969-806X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/50503
identifier_str_mv Figueroa, R. G.; Santibañez, M.; Malano, Francisco Mauricio; Valente, Mauro Andres; Optimal configuration for detection of gold nanoparticles in tumors using Kβ X-ray fluorescence line; Pergamon-Elsevier Science Ltd; Radiation Physics and Chemistry (Oxford); 117; 12-2015; 198-202
0969-806X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.radphyschem.2015.08.017
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0969806X15300414
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082969122373632
score 13.22299