Proper Hamiltonian Paths in Edge-Colored Multigraphs

Autores
Águeda, Raquel; Borozan, Valentin; Groshaus, Marina Esther; Manoussakis, Yannis; Mendy, Gervais; Montero, Leandro Pedro
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A c-edge-colored multigraph has each edge colored with one of the c available colors and no two parallel edges have the same color. A proper hamiltonian path is a path containing all the vertices of the multigraph such that no two adjacent edges have the same color. In this work we establish sufficient conditions for a multigraph to have a proper hamiltonian path, depending on several parameters such as the number of edges, the rainbow degree, etc.
Fil: Águeda, Raquel. Universidad de Castilla-La Mancha; España
Fil: Borozan, Valentin. Université de Paris XI; Francia
Fil: Groshaus, Marina Esther. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina
Fil: Manoussakis, Yannis. Université de Paris XI; Francia
Fil: Mendy, Gervais. Université de Paris XI; Francia
Fil: Montero, Leandro Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Université de Paris XI; Francia
Materia
Edge-Coloring
Multigraph
Proper Hamiltonian Path
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/68315

id CONICETDig_2cfaba1447a4c9d8c4d244547d45a24d
oai_identifier_str oai:ri.conicet.gov.ar:11336/68315
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Proper Hamiltonian Paths in Edge-Colored MultigraphsÁgueda, RaquelBorozan, ValentinGroshaus, Marina EstherManoussakis, YannisMendy, GervaisMontero, Leandro PedroEdge-ColoringMultigraphProper Hamiltonian Pathhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A c-edge-colored multigraph has each edge colored with one of the c available colors and no two parallel edges have the same color. A proper hamiltonian path is a path containing all the vertices of the multigraph such that no two adjacent edges have the same color. In this work we establish sufficient conditions for a multigraph to have a proper hamiltonian path, depending on several parameters such as the number of edges, the rainbow degree, etc.Fil: Águeda, Raquel. Universidad de Castilla-La Mancha; EspañaFil: Borozan, Valentin. Université de Paris XI; FranciaFil: Groshaus, Marina Esther. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; ArgentinaFil: Manoussakis, Yannis. Université de Paris XI; FranciaFil: Mendy, Gervais. Université de Paris XI; FranciaFil: Montero, Leandro Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Université de Paris XI; FranciaElsevier2011-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/68315Águeda, Raquel; Borozan, Valentin; Groshaus, Marina Esther; Manoussakis, Yannis; Mendy, Gervais; et al.; Proper Hamiltonian Paths in Edge-Colored Multigraphs; Elsevier; Electronic Notes in Discrete Mathematics; 38; 12-2011; 5-101571-0653CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.endm.2011.09.002info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1571065311000710info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:06Zoai:ri.conicet.gov.ar:11336/68315instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:07.082CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Proper Hamiltonian Paths in Edge-Colored Multigraphs
title Proper Hamiltonian Paths in Edge-Colored Multigraphs
spellingShingle Proper Hamiltonian Paths in Edge-Colored Multigraphs
Águeda, Raquel
Edge-Coloring
Multigraph
Proper Hamiltonian Path
title_short Proper Hamiltonian Paths in Edge-Colored Multigraphs
title_full Proper Hamiltonian Paths in Edge-Colored Multigraphs
title_fullStr Proper Hamiltonian Paths in Edge-Colored Multigraphs
title_full_unstemmed Proper Hamiltonian Paths in Edge-Colored Multigraphs
title_sort Proper Hamiltonian Paths in Edge-Colored Multigraphs
dc.creator.none.fl_str_mv Águeda, Raquel
Borozan, Valentin
Groshaus, Marina Esther
Manoussakis, Yannis
Mendy, Gervais
Montero, Leandro Pedro
author Águeda, Raquel
author_facet Águeda, Raquel
Borozan, Valentin
Groshaus, Marina Esther
Manoussakis, Yannis
Mendy, Gervais
Montero, Leandro Pedro
author_role author
author2 Borozan, Valentin
Groshaus, Marina Esther
Manoussakis, Yannis
Mendy, Gervais
Montero, Leandro Pedro
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Edge-Coloring
Multigraph
Proper Hamiltonian Path
topic Edge-Coloring
Multigraph
Proper Hamiltonian Path
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A c-edge-colored multigraph has each edge colored with one of the c available colors and no two parallel edges have the same color. A proper hamiltonian path is a path containing all the vertices of the multigraph such that no two adjacent edges have the same color. In this work we establish sufficient conditions for a multigraph to have a proper hamiltonian path, depending on several parameters such as the number of edges, the rainbow degree, etc.
Fil: Águeda, Raquel. Universidad de Castilla-La Mancha; España
Fil: Borozan, Valentin. Université de Paris XI; Francia
Fil: Groshaus, Marina Esther. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina
Fil: Manoussakis, Yannis. Université de Paris XI; Francia
Fil: Mendy, Gervais. Université de Paris XI; Francia
Fil: Montero, Leandro Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Université de Paris XI; Francia
description A c-edge-colored multigraph has each edge colored with one of the c available colors and no two parallel edges have the same color. A proper hamiltonian path is a path containing all the vertices of the multigraph such that no two adjacent edges have the same color. In this work we establish sufficient conditions for a multigraph to have a proper hamiltonian path, depending on several parameters such as the number of edges, the rainbow degree, etc.
publishDate 2011
dc.date.none.fl_str_mv 2011-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/68315
Águeda, Raquel; Borozan, Valentin; Groshaus, Marina Esther; Manoussakis, Yannis; Mendy, Gervais; et al.; Proper Hamiltonian Paths in Edge-Colored Multigraphs; Elsevier; Electronic Notes in Discrete Mathematics; 38; 12-2011; 5-10
1571-0653
CONICET Digital
CONICET
url http://hdl.handle.net/11336/68315
identifier_str_mv Águeda, Raquel; Borozan, Valentin; Groshaus, Marina Esther; Manoussakis, Yannis; Mendy, Gervais; et al.; Proper Hamiltonian Paths in Edge-Colored Multigraphs; Elsevier; Electronic Notes in Discrete Mathematics; 38; 12-2011; 5-10
1571-0653
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.endm.2011.09.002
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1571065311000710
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613090839101440
score 13.069144