Naphthalene biodegradation under oxygen-limiting conditions: community dynamics and the relevance of biofilm-forming capacity

Autores
Martirani Von Abercron, Sophie Marie; Marín, Patricia; Solsona Ferraz, Marta; Castañeda Cataña, Mayra Alejandra; Marqués, Silvia
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Toxic polycyclic aromatic hydrocarbons (PAHs) are frequently released into the environment from anthropogenic sources. PAH remediation strategies focus on biological processes mediated by bacteria. The availability of oxygen in polluted environments is often limited or absent, and only bacteria able to thrive in these conditions can be considered for bioremediation strategies. To identify bacterial strains able to degrade PAHs under oxygen-limiting conditions, we set up enrichment cultures from samples of an oil-polluted aquifer, using either anoxic or microaerophilic condition and with PAHs as the sole carbon source. Despite the presence of a significant community of nitrate-reducing bacteria, the initial community, which was dominated by Betaproteobacteria, was incapable of PAH degradation under strict anoxic conditions, although a clear shift in the structure of the community towards an increase in the Alphaproteobacteria (Sphingomonadaceae), Actinobacteria and an uncultured group of Acidobacteria was observed in the enrichments. In contrast, growth under microaerophilic conditions with naphthalene as the carbon source evidenced the development of a biofilm structure around the naphthalene crystal. The enrichment process selected two co-dominant groups which finally reached 97% of the bacterial communities: Variovorax spp. (54%, Betaproteobacteria) and Starkeya spp. (43%, Xanthobacteraceae). The two dominant populations were able to grow with naphthalene, although only Starkeya was able to reproduce the biofilm structure around the naphthalene crystal. The pathway for naphthalene degradation was identified, which included as essential steps dioxygenases with high affinity for oxygen, showing 99% identity with Xanthobacter polyaromaticivorans dbd cluster for PAH degradation. Our results suggest that the biofilm formation capacity of Starkeya provided a structure to allocate its cells at an appropriate distance from the toxic carbon source.
Fil: Martirani Von Abercron, Sophie Marie. Consejo Superior de Investigaciones Científicas. Estación Experimental del Zaidín; España
Fil: Marín, Patricia. Consejo Superior de Investigaciones Científicas. Estación Experimental del Zaidín; España
Fil: Solsona Ferraz, Marta. Consejo Superior de Investigaciones Científicas. Estación Experimental del Zaidín; España
Fil: Castañeda Cataña, Mayra Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Marqués, Silvia. Consejo Superior de Investigaciones Científicas. Estación Experimental del Zaidín; España
Materia
polycyclic aromatic hydrocarbons (PAHs)
Starkeya spp.
naphthalene crystal
biofilm structure
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/180994

id CONICETDig_dbfbd1f22ef4bba3ef116c5088af031e
oai_identifier_str oai:ri.conicet.gov.ar:11336/180994
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Naphthalene biodegradation under oxygen-limiting conditions: community dynamics and the relevance of biofilm-forming capacityMartirani Von Abercron, Sophie MarieMarín, PatriciaSolsona Ferraz, MartaCastañeda Cataña, Mayra AlejandraMarqués, Silviapolycyclic aromatic hydrocarbons (PAHs)Starkeya spp.naphthalene crystalbiofilm structurehttps://purl.org/becyt/ford/2.8https://purl.org/becyt/ford/2Toxic polycyclic aromatic hydrocarbons (PAHs) are frequently released into the environment from anthropogenic sources. PAH remediation strategies focus on biological processes mediated by bacteria. The availability of oxygen in polluted environments is often limited or absent, and only bacteria able to thrive in these conditions can be considered for bioremediation strategies. To identify bacterial strains able to degrade PAHs under oxygen-limiting conditions, we set up enrichment cultures from samples of an oil-polluted aquifer, using either anoxic or microaerophilic condition and with PAHs as the sole carbon source. Despite the presence of a significant community of nitrate-reducing bacteria, the initial community, which was dominated by Betaproteobacteria, was incapable of PAH degradation under strict anoxic conditions, although a clear shift in the structure of the community towards an increase in the Alphaproteobacteria (Sphingomonadaceae), Actinobacteria and an uncultured group of Acidobacteria was observed in the enrichments. In contrast, growth under microaerophilic conditions with naphthalene as the carbon source evidenced the development of a biofilm structure around the naphthalene crystal. The enrichment process selected two co-dominant groups which finally reached 97% of the bacterial communities: Variovorax spp. (54%, Betaproteobacteria) and Starkeya spp. (43%, Xanthobacteraceae). The two dominant populations were able to grow with naphthalene, although only Starkeya was able to reproduce the biofilm structure around the naphthalene crystal. The pathway for naphthalene degradation was identified, which included as essential steps dioxygenases with high affinity for oxygen, showing 99% identity with Xanthobacter polyaromaticivorans dbd cluster for PAH degradation. Our results suggest that the biofilm formation capacity of Starkeya provided a structure to allocate its cells at an appropriate distance from the toxic carbon source.Fil: Martirani Von Abercron, Sophie Marie. Consejo Superior de Investigaciones Científicas. Estación Experimental del Zaidín; EspañaFil: Marín, Patricia. Consejo Superior de Investigaciones Científicas. Estación Experimental del Zaidín; EspañaFil: Solsona Ferraz, Marta. Consejo Superior de Investigaciones Científicas. Estación Experimental del Zaidín; EspañaFil: Castañeda Cataña, Mayra Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Marqués, Silvia. Consejo Superior de Investigaciones Científicas. Estación Experimental del Zaidín; EspañaJohn Wiley & Sons Ltd2017-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/180994Martirani Von Abercron, Sophie Marie; Marín, Patricia; Solsona Ferraz, Marta; Castañeda Cataña, Mayra Alejandra; Marqués, Silvia; Naphthalene biodegradation under oxygen-limiting conditions: community dynamics and the relevance of biofilm-forming capacity; John Wiley & Sons Ltd; Microbial Biotechnology; 10; 6; 8-2017; 1781-17961751-7915CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1111/1751-7915.12842info:eu-repo/semantics/altIdentifier/doi/10.1111/1751-7915.12842info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:14:56Zoai:ri.conicet.gov.ar:11336/180994instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:14:56.277CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Naphthalene biodegradation under oxygen-limiting conditions: community dynamics and the relevance of biofilm-forming capacity
title Naphthalene biodegradation under oxygen-limiting conditions: community dynamics and the relevance of biofilm-forming capacity
spellingShingle Naphthalene biodegradation under oxygen-limiting conditions: community dynamics and the relevance of biofilm-forming capacity
Martirani Von Abercron, Sophie Marie
polycyclic aromatic hydrocarbons (PAHs)
Starkeya spp.
naphthalene crystal
biofilm structure
title_short Naphthalene biodegradation under oxygen-limiting conditions: community dynamics and the relevance of biofilm-forming capacity
title_full Naphthalene biodegradation under oxygen-limiting conditions: community dynamics and the relevance of biofilm-forming capacity
title_fullStr Naphthalene biodegradation under oxygen-limiting conditions: community dynamics and the relevance of biofilm-forming capacity
title_full_unstemmed Naphthalene biodegradation under oxygen-limiting conditions: community dynamics and the relevance of biofilm-forming capacity
title_sort Naphthalene biodegradation under oxygen-limiting conditions: community dynamics and the relevance of biofilm-forming capacity
dc.creator.none.fl_str_mv Martirani Von Abercron, Sophie Marie
Marín, Patricia
Solsona Ferraz, Marta
Castañeda Cataña, Mayra Alejandra
Marqués, Silvia
author Martirani Von Abercron, Sophie Marie
author_facet Martirani Von Abercron, Sophie Marie
Marín, Patricia
Solsona Ferraz, Marta
Castañeda Cataña, Mayra Alejandra
Marqués, Silvia
author_role author
author2 Marín, Patricia
Solsona Ferraz, Marta
Castañeda Cataña, Mayra Alejandra
Marqués, Silvia
author2_role author
author
author
author
dc.subject.none.fl_str_mv polycyclic aromatic hydrocarbons (PAHs)
Starkeya spp.
naphthalene crystal
biofilm structure
topic polycyclic aromatic hydrocarbons (PAHs)
Starkeya spp.
naphthalene crystal
biofilm structure
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.8
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Toxic polycyclic aromatic hydrocarbons (PAHs) are frequently released into the environment from anthropogenic sources. PAH remediation strategies focus on biological processes mediated by bacteria. The availability of oxygen in polluted environments is often limited or absent, and only bacteria able to thrive in these conditions can be considered for bioremediation strategies. To identify bacterial strains able to degrade PAHs under oxygen-limiting conditions, we set up enrichment cultures from samples of an oil-polluted aquifer, using either anoxic or microaerophilic condition and with PAHs as the sole carbon source. Despite the presence of a significant community of nitrate-reducing bacteria, the initial community, which was dominated by Betaproteobacteria, was incapable of PAH degradation under strict anoxic conditions, although a clear shift in the structure of the community towards an increase in the Alphaproteobacteria (Sphingomonadaceae), Actinobacteria and an uncultured group of Acidobacteria was observed in the enrichments. In contrast, growth under microaerophilic conditions with naphthalene as the carbon source evidenced the development of a biofilm structure around the naphthalene crystal. The enrichment process selected two co-dominant groups which finally reached 97% of the bacterial communities: Variovorax spp. (54%, Betaproteobacteria) and Starkeya spp. (43%, Xanthobacteraceae). The two dominant populations were able to grow with naphthalene, although only Starkeya was able to reproduce the biofilm structure around the naphthalene crystal. The pathway for naphthalene degradation was identified, which included as essential steps dioxygenases with high affinity for oxygen, showing 99% identity with Xanthobacter polyaromaticivorans dbd cluster for PAH degradation. Our results suggest that the biofilm formation capacity of Starkeya provided a structure to allocate its cells at an appropriate distance from the toxic carbon source.
Fil: Martirani Von Abercron, Sophie Marie. Consejo Superior de Investigaciones Científicas. Estación Experimental del Zaidín; España
Fil: Marín, Patricia. Consejo Superior de Investigaciones Científicas. Estación Experimental del Zaidín; España
Fil: Solsona Ferraz, Marta. Consejo Superior de Investigaciones Científicas. Estación Experimental del Zaidín; España
Fil: Castañeda Cataña, Mayra Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Marqués, Silvia. Consejo Superior de Investigaciones Científicas. Estación Experimental del Zaidín; España
description Toxic polycyclic aromatic hydrocarbons (PAHs) are frequently released into the environment from anthropogenic sources. PAH remediation strategies focus on biological processes mediated by bacteria. The availability of oxygen in polluted environments is often limited or absent, and only bacteria able to thrive in these conditions can be considered for bioremediation strategies. To identify bacterial strains able to degrade PAHs under oxygen-limiting conditions, we set up enrichment cultures from samples of an oil-polluted aquifer, using either anoxic or microaerophilic condition and with PAHs as the sole carbon source. Despite the presence of a significant community of nitrate-reducing bacteria, the initial community, which was dominated by Betaproteobacteria, was incapable of PAH degradation under strict anoxic conditions, although a clear shift in the structure of the community towards an increase in the Alphaproteobacteria (Sphingomonadaceae), Actinobacteria and an uncultured group of Acidobacteria was observed in the enrichments. In contrast, growth under microaerophilic conditions with naphthalene as the carbon source evidenced the development of a biofilm structure around the naphthalene crystal. The enrichment process selected two co-dominant groups which finally reached 97% of the bacterial communities: Variovorax spp. (54%, Betaproteobacteria) and Starkeya spp. (43%, Xanthobacteraceae). The two dominant populations were able to grow with naphthalene, although only Starkeya was able to reproduce the biofilm structure around the naphthalene crystal. The pathway for naphthalene degradation was identified, which included as essential steps dioxygenases with high affinity for oxygen, showing 99% identity with Xanthobacter polyaromaticivorans dbd cluster for PAH degradation. Our results suggest that the biofilm formation capacity of Starkeya provided a structure to allocate its cells at an appropriate distance from the toxic carbon source.
publishDate 2017
dc.date.none.fl_str_mv 2017-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/180994
Martirani Von Abercron, Sophie Marie; Marín, Patricia; Solsona Ferraz, Marta; Castañeda Cataña, Mayra Alejandra; Marqués, Silvia; Naphthalene biodegradation under oxygen-limiting conditions: community dynamics and the relevance of biofilm-forming capacity; John Wiley & Sons Ltd; Microbial Biotechnology; 10; 6; 8-2017; 1781-1796
1751-7915
CONICET Digital
CONICET
url http://hdl.handle.net/11336/180994
identifier_str_mv Martirani Von Abercron, Sophie Marie; Marín, Patricia; Solsona Ferraz, Marta; Castañeda Cataña, Mayra Alejandra; Marqués, Silvia; Naphthalene biodegradation under oxygen-limiting conditions: community dynamics and the relevance of biofilm-forming capacity; John Wiley & Sons Ltd; Microbial Biotechnology; 10; 6; 8-2017; 1781-1796
1751-7915
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1111/1751-7915.12842
info:eu-repo/semantics/altIdentifier/doi/10.1111/1751-7915.12842
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv John Wiley & Sons Ltd
publisher.none.fl_str_mv John Wiley & Sons Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980801051885568
score 12.993085