Multivariate Chemometric Analysis of a Polluted River of a Megalopolis
- Autores
- Garcia Reiriz, Alejandro Gabriel; Magallanes, Jorge Federico; Vracko, Marjan; Zupan, Jure; Reich, Silvia Leonor; Cicerone, Daniel
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A chemometrical study regarding a 10-years water quality monitoring plan at 15 sampling points along a section of the Reconquista River and its stream channels, which embraces 21 campaigns, is presented. The original data were pre-treated in order to eliminate missing data and outliers, obtaining a final data matrix of 270 samples by 26 physical-chemistry variables. Multivariate statistical methods like multi curve resolution, canonical correlation analysis and factor analysis methods, as well as current univariate statistics were applied. The interpretation was simplified when variables were separated in groups containing environmentally and chemically related variables instead of analyzing them all together. These methods have shown that the presence of metals likely come from at least 3 different type of sources. Although the stream channels arriving to the main river course are highly polluted, their flow rates are so low that do not significantly decrease its water quality. They mainly contribute to the high levels of biochemical-oxygen demand and chemical-oxygen demand as well as nitrogen-content species. Furthermore, regarding metals, the pollution of the river coming from the upstream is higher than those introduced by all channels.
Fil: Garcia Reiriz, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
Fil: Magallanes, Jorge Federico. Comisión Nacional de Energía Atómica; Argentina
Fil: Vracko, Marjan. National Institute of Chemistry; Eslovenia
Fil: Zupan, Jure. National Institute of Chemistry; Eslovenia
Fil: Reich, Silvia Leonor. Universidad Nacional de San Martín. Instituto de Investigación en Ingeniería Ambiental; Argentina
Fil: Cicerone, Daniel. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de San Martín. Instituto de Investigación en Ingeniería Ambiental; Argentina - Materia
-
SURFACE WATER
WATER POLLUTION
CHEMOMETRIC
MULTIVARIATE STATISTIC - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/129647
Ver los metadatos del registro completo
id |
CONICETDig_d9215c6c463834a9fec4e661e942d328 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/129647 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multivariate Chemometric Analysis of a Polluted River of a MegalopolisGarcia Reiriz, Alejandro GabrielMagallanes, Jorge FedericoVracko, MarjanZupan, JureReich, Silvia LeonorCicerone, DanielSURFACE WATERWATER POLLUTIONCHEMOMETRICMULTIVARIATE STATISTIChttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1A chemometrical study regarding a 10-years water quality monitoring plan at 15 sampling points along a section of the Reconquista River and its stream channels, which embraces 21 campaigns, is presented. The original data were pre-treated in order to eliminate missing data and outliers, obtaining a final data matrix of 270 samples by 26 physical-chemistry variables. Multivariate statistical methods like multi curve resolution, canonical correlation analysis and factor analysis methods, as well as current univariate statistics were applied. The interpretation was simplified when variables were separated in groups containing environmentally and chemically related variables instead of analyzing them all together. These methods have shown that the presence of metals likely come from at least 3 different type of sources. Although the stream channels arriving to the main river course are highly polluted, their flow rates are so low that do not significantly decrease its water quality. They mainly contribute to the high levels of biochemical-oxygen demand and chemical-oxygen demand as well as nitrogen-content species. Furthermore, regarding metals, the pollution of the river coming from the upstream is higher than those introduced by all channels.Fil: Garcia Reiriz, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaFil: Magallanes, Jorge Federico. Comisión Nacional de Energía Atómica; ArgentinaFil: Vracko, Marjan. National Institute of Chemistry; EsloveniaFil: Zupan, Jure. National Institute of Chemistry; EsloveniaFil: Reich, Silvia Leonor. Universidad Nacional de San Martín. Instituto de Investigación en Ingeniería Ambiental; ArgentinaFil: Cicerone, Daniel. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de San Martín. Instituto de Investigación en Ingeniería Ambiental; ArgentinaScientific Research2011-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/129647Garcia Reiriz, Alejandro Gabriel; Magallanes, Jorge Federico; Vracko, Marjan; Zupan, Jure; Reich, Silvia Leonor; et al.; Multivariate Chemometric Analysis of a Polluted River of a Megalopolis; Scientific Research; Journal of Environmental Protection; 2; 7; 9-2011; 903-9142152-21972152-2219CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.scirp.org/journal/paperinformation.aspx?paperid=7414info:eu-repo/semantics/altIdentifier/doi/10.4236/jep.2011.27103info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:02:21Zoai:ri.conicet.gov.ar:11336/129647instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:02:22.147CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multivariate Chemometric Analysis of a Polluted River of a Megalopolis |
title |
Multivariate Chemometric Analysis of a Polluted River of a Megalopolis |
spellingShingle |
Multivariate Chemometric Analysis of a Polluted River of a Megalopolis Garcia Reiriz, Alejandro Gabriel SURFACE WATER WATER POLLUTION CHEMOMETRIC MULTIVARIATE STATISTIC |
title_short |
Multivariate Chemometric Analysis of a Polluted River of a Megalopolis |
title_full |
Multivariate Chemometric Analysis of a Polluted River of a Megalopolis |
title_fullStr |
Multivariate Chemometric Analysis of a Polluted River of a Megalopolis |
title_full_unstemmed |
Multivariate Chemometric Analysis of a Polluted River of a Megalopolis |
title_sort |
Multivariate Chemometric Analysis of a Polluted River of a Megalopolis |
dc.creator.none.fl_str_mv |
Garcia Reiriz, Alejandro Gabriel Magallanes, Jorge Federico Vracko, Marjan Zupan, Jure Reich, Silvia Leonor Cicerone, Daniel |
author |
Garcia Reiriz, Alejandro Gabriel |
author_facet |
Garcia Reiriz, Alejandro Gabriel Magallanes, Jorge Federico Vracko, Marjan Zupan, Jure Reich, Silvia Leonor Cicerone, Daniel |
author_role |
author |
author2 |
Magallanes, Jorge Federico Vracko, Marjan Zupan, Jure Reich, Silvia Leonor Cicerone, Daniel |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
SURFACE WATER WATER POLLUTION CHEMOMETRIC MULTIVARIATE STATISTIC |
topic |
SURFACE WATER WATER POLLUTION CHEMOMETRIC MULTIVARIATE STATISTIC |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A chemometrical study regarding a 10-years water quality monitoring plan at 15 sampling points along a section of the Reconquista River and its stream channels, which embraces 21 campaigns, is presented. The original data were pre-treated in order to eliminate missing data and outliers, obtaining a final data matrix of 270 samples by 26 physical-chemistry variables. Multivariate statistical methods like multi curve resolution, canonical correlation analysis and factor analysis methods, as well as current univariate statistics were applied. The interpretation was simplified when variables were separated in groups containing environmentally and chemically related variables instead of analyzing them all together. These methods have shown that the presence of metals likely come from at least 3 different type of sources. Although the stream channels arriving to the main river course are highly polluted, their flow rates are so low that do not significantly decrease its water quality. They mainly contribute to the high levels of biochemical-oxygen demand and chemical-oxygen demand as well as nitrogen-content species. Furthermore, regarding metals, the pollution of the river coming from the upstream is higher than those introduced by all channels. Fil: Garcia Reiriz, Alejandro Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina Fil: Magallanes, Jorge Federico. Comisión Nacional de Energía Atómica; Argentina Fil: Vracko, Marjan. National Institute of Chemistry; Eslovenia Fil: Zupan, Jure. National Institute of Chemistry; Eslovenia Fil: Reich, Silvia Leonor. Universidad Nacional de San Martín. Instituto de Investigación en Ingeniería Ambiental; Argentina Fil: Cicerone, Daniel. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de San Martín. Instituto de Investigación en Ingeniería Ambiental; Argentina |
description |
A chemometrical study regarding a 10-years water quality monitoring plan at 15 sampling points along a section of the Reconquista River and its stream channels, which embraces 21 campaigns, is presented. The original data were pre-treated in order to eliminate missing data and outliers, obtaining a final data matrix of 270 samples by 26 physical-chemistry variables. Multivariate statistical methods like multi curve resolution, canonical correlation analysis and factor analysis methods, as well as current univariate statistics were applied. The interpretation was simplified when variables were separated in groups containing environmentally and chemically related variables instead of analyzing them all together. These methods have shown that the presence of metals likely come from at least 3 different type of sources. Although the stream channels arriving to the main river course are highly polluted, their flow rates are so low that do not significantly decrease its water quality. They mainly contribute to the high levels of biochemical-oxygen demand and chemical-oxygen demand as well as nitrogen-content species. Furthermore, regarding metals, the pollution of the river coming from the upstream is higher than those introduced by all channels. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/129647 Garcia Reiriz, Alejandro Gabriel; Magallanes, Jorge Federico; Vracko, Marjan; Zupan, Jure; Reich, Silvia Leonor; et al.; Multivariate Chemometric Analysis of a Polluted River of a Megalopolis; Scientific Research; Journal of Environmental Protection; 2; 7; 9-2011; 903-914 2152-2197 2152-2219 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/129647 |
identifier_str_mv |
Garcia Reiriz, Alejandro Gabriel; Magallanes, Jorge Federico; Vracko, Marjan; Zupan, Jure; Reich, Silvia Leonor; et al.; Multivariate Chemometric Analysis of a Polluted River of a Megalopolis; Scientific Research; Journal of Environmental Protection; 2; 7; 9-2011; 903-914 2152-2197 2152-2219 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.scirp.org/journal/paperinformation.aspx?paperid=7414 info:eu-repo/semantics/altIdentifier/doi/10.4236/jep.2011.27103 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Scientific Research |
publisher.none.fl_str_mv |
Scientific Research |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613827137634304 |
score |
13.070432 |