Water quality assessment using multivariate statistical techniques in Río Tercero Reservoir, Argentina
- Autores
- Bonansea, Matias; Ledesma, Claudia; Rodriguez, Claudia; Pinotti, Lucio Pedro
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Water quality monitoring programs generate complex multidimensional data sets. In this study, multivariate statistical techniques were employed as an effective tool for the analysis and interpretation of these water quality data sets. Principal component analysis (PCA) and cluster analysis (CA) were applied to evaluate spatial and temporal variation of water quality in Río Tercero Reservoir (Argentina). Six sampling sites were surveyed each climatic season for 21 parameters during 2003-2010. The results revealed that PCA showed the existence of four significant principal components (PCs) which account for 96.7% of the total variance of the data set. The first PC was assigned to mineralization whereas the other PCs were built from variables indicative of pollution. Hierarchical CA grouped the six monitoring sites into three clusters and classified the different climatic seasons into two clusters based on similarities in water quality characteristics.
Fil: Bonansea, Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Agronomía y Veterinaria; Argentina
Fil: Ledesma, Claudia. Universidad Nacional de Río Cuarto. Facultad de Agronomía y Veterinaria; Argentina
Fil: Rodriguez, Claudia. Universidad Nacional de Río Cuarto. Facultad de Agronomía y Veterinaria; Argentina
Fil: Pinotti, Lucio Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Geología; Argentina - Materia
-
Cluster Analysis
Monitoring
Multivariate Statistical Techniques
Principal Components
Surface Water
Water Quality - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/69398
Ver los metadatos del registro completo
id |
CONICETDig_d83343ad089fe12c665b197bc24bd62c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/69398 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Water quality assessment using multivariate statistical techniques in Río Tercero Reservoir, ArgentinaBonansea, MatiasLedesma, ClaudiaRodriguez, ClaudiaPinotti, Lucio PedroCluster AnalysisMonitoringMultivariate Statistical TechniquesPrincipal ComponentsSurface WaterWater Qualityhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Water quality monitoring programs generate complex multidimensional data sets. In this study, multivariate statistical techniques were employed as an effective tool for the analysis and interpretation of these water quality data sets. Principal component analysis (PCA) and cluster analysis (CA) were applied to evaluate spatial and temporal variation of water quality in Río Tercero Reservoir (Argentina). Six sampling sites were surveyed each climatic season for 21 parameters during 2003-2010. The results revealed that PCA showed the existence of four significant principal components (PCs) which account for 96.7% of the total variance of the data set. The first PC was assigned to mineralization whereas the other PCs were built from variables indicative of pollution. Hierarchical CA grouped the six monitoring sites into three clusters and classified the different climatic seasons into two clusters based on similarities in water quality characteristics.Fil: Bonansea, Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Agronomía y Veterinaria; ArgentinaFil: Ledesma, Claudia. Universidad Nacional de Río Cuarto. Facultad de Agronomía y Veterinaria; ArgentinaFil: Rodriguez, Claudia. Universidad Nacional de Río Cuarto. Facultad de Agronomía y Veterinaria; ArgentinaFil: Pinotti, Lucio Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Geología; ArgentinaNordic Association for Hydrology2015-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/69398Bonansea, Matias; Ledesma, Claudia; Rodriguez, Claudia; Pinotti, Lucio Pedro; Water quality assessment using multivariate statistical techniques in Río Tercero Reservoir, Argentina; Nordic Association for Hydrology; Hydrology Research; 46; 3; 6-2015; 377-3882224-7955CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.2166/nh.2014.174info:eu-repo/semantics/altIdentifier/url/https://iwaponline.com/hr/article-abstract/46/3/377/1000/Water-quality-assessment-using-multivariate?redirectedFrom=fulltextinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:32:20Zoai:ri.conicet.gov.ar:11336/69398instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:32:20.525CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Water quality assessment using multivariate statistical techniques in Río Tercero Reservoir, Argentina |
title |
Water quality assessment using multivariate statistical techniques in Río Tercero Reservoir, Argentina |
spellingShingle |
Water quality assessment using multivariate statistical techniques in Río Tercero Reservoir, Argentina Bonansea, Matias Cluster Analysis Monitoring Multivariate Statistical Techniques Principal Components Surface Water Water Quality |
title_short |
Water quality assessment using multivariate statistical techniques in Río Tercero Reservoir, Argentina |
title_full |
Water quality assessment using multivariate statistical techniques in Río Tercero Reservoir, Argentina |
title_fullStr |
Water quality assessment using multivariate statistical techniques in Río Tercero Reservoir, Argentina |
title_full_unstemmed |
Water quality assessment using multivariate statistical techniques in Río Tercero Reservoir, Argentina |
title_sort |
Water quality assessment using multivariate statistical techniques in Río Tercero Reservoir, Argentina |
dc.creator.none.fl_str_mv |
Bonansea, Matias Ledesma, Claudia Rodriguez, Claudia Pinotti, Lucio Pedro |
author |
Bonansea, Matias |
author_facet |
Bonansea, Matias Ledesma, Claudia Rodriguez, Claudia Pinotti, Lucio Pedro |
author_role |
author |
author2 |
Ledesma, Claudia Rodriguez, Claudia Pinotti, Lucio Pedro |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Cluster Analysis Monitoring Multivariate Statistical Techniques Principal Components Surface Water Water Quality |
topic |
Cluster Analysis Monitoring Multivariate Statistical Techniques Principal Components Surface Water Water Quality |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Water quality monitoring programs generate complex multidimensional data sets. In this study, multivariate statistical techniques were employed as an effective tool for the analysis and interpretation of these water quality data sets. Principal component analysis (PCA) and cluster analysis (CA) were applied to evaluate spatial and temporal variation of water quality in Río Tercero Reservoir (Argentina). Six sampling sites were surveyed each climatic season for 21 parameters during 2003-2010. The results revealed that PCA showed the existence of four significant principal components (PCs) which account for 96.7% of the total variance of the data set. The first PC was assigned to mineralization whereas the other PCs were built from variables indicative of pollution. Hierarchical CA grouped the six monitoring sites into three clusters and classified the different climatic seasons into two clusters based on similarities in water quality characteristics. Fil: Bonansea, Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Agronomía y Veterinaria; Argentina Fil: Ledesma, Claudia. Universidad Nacional de Río Cuarto. Facultad de Agronomía y Veterinaria; Argentina Fil: Rodriguez, Claudia. Universidad Nacional de Río Cuarto. Facultad de Agronomía y Veterinaria; Argentina Fil: Pinotti, Lucio Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Geología; Argentina |
description |
Water quality monitoring programs generate complex multidimensional data sets. In this study, multivariate statistical techniques were employed as an effective tool for the analysis and interpretation of these water quality data sets. Principal component analysis (PCA) and cluster analysis (CA) were applied to evaluate spatial and temporal variation of water quality in Río Tercero Reservoir (Argentina). Six sampling sites were surveyed each climatic season for 21 parameters during 2003-2010. The results revealed that PCA showed the existence of four significant principal components (PCs) which account for 96.7% of the total variance of the data set. The first PC was assigned to mineralization whereas the other PCs were built from variables indicative of pollution. Hierarchical CA grouped the six monitoring sites into three clusters and classified the different climatic seasons into two clusters based on similarities in water quality characteristics. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/69398 Bonansea, Matias; Ledesma, Claudia; Rodriguez, Claudia; Pinotti, Lucio Pedro; Water quality assessment using multivariate statistical techniques in Río Tercero Reservoir, Argentina; Nordic Association for Hydrology; Hydrology Research; 46; 3; 6-2015; 377-388 2224-7955 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/69398 |
identifier_str_mv |
Bonansea, Matias; Ledesma, Claudia; Rodriguez, Claudia; Pinotti, Lucio Pedro; Water quality assessment using multivariate statistical techniques in Río Tercero Reservoir, Argentina; Nordic Association for Hydrology; Hydrology Research; 46; 3; 6-2015; 377-388 2224-7955 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.2166/nh.2014.174 info:eu-repo/semantics/altIdentifier/url/https://iwaponline.com/hr/article-abstract/46/3/377/1000/Water-quality-assessment-using-multivariate?redirectedFrom=fulltext |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nordic Association for Hydrology |
publisher.none.fl_str_mv |
Nordic Association for Hydrology |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844612985602965504 |
score |
13.070432 |