Chemometric modeling for spatiotemporal characterization and self-depuration monitoring of surface water assessing the pollution sources impact of northern Argentina rivers
- Autores
- Jurado Zavaleta, Marcelo A.; Alcaraz, Mirta Raquel; Peñaloza, Lidia Guadalupe; Boemo, Analía; Cardozo, Ana; Tarcaya, Gerardo; Azcarate, Silvana Mariela; Goicoechea, Hector Casimiro
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In Argentina, both surface and ground water are used for a diverse priority purposes, such as drinking and basic hygiene, but they are also utilized as receivers of different types of industrial and urban and suburban effluents that affect their natural composition. This activity accompanied by the increase of the population and climate changes have activated the alarms of organism water management forced to implement strict quality controls previous to its use. In this work, a systematic evaluation of a set of physicochemical and biological parameters measured in 19 sampling sites during the period 2017–2019 is presented. Principal component analysis (PCA) and matrix augmentation-PCA (MA-PCA) were applied as exploratory analysis tools to visualize and interpret the information contained in the dataset. Both studies allowed to detect the relevant variables and to differentiate the samples based on pollution areas. These models led to similar conclusions; nonetheless, MA-PCA provided a more straightforward overview of the spatiotemporal variation of the samples in comparison to classical PCA. Finally, a significant and sensitive discriminant model (93% non-error rate) was developed to analyze and predict the self-depuration of the rivers. The excellent predictive ability achieved by this model makes its application suitable for the monitoring of the water quality.
Fil: Jurado Zavaleta, Marcelo A.. Universidad Nacional de Salta; Argentina
Fil: Alcaraz, Mirta Raquel. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Peñaloza, Lidia Guadalupe. Universidad Nacional de Salta; Argentina
Fil: Boemo, Analía. Universidad Nacional de Salta; Argentina
Fil: Cardozo, Ana. No especifíca;
Fil: Tarcaya, Gerardo. No especifíca;
Fil: Azcarate, Silvana Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
Fil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
ARGENTINA RIVERS
CHEMOMETRIC MODELING
SELF-DEPURATION MONITORING
SOURCE POLLUTION
SURFACE WATER QUALITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/151046
Ver los metadatos del registro completo
id |
CONICETDig_6965ef256c7b2d1773c407c40da60592 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/151046 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Chemometric modeling for spatiotemporal characterization and self-depuration monitoring of surface water assessing the pollution sources impact of northern Argentina riversJurado Zavaleta, Marcelo A.Alcaraz, Mirta RaquelPeñaloza, Lidia GuadalupeBoemo, AnalíaCardozo, AnaTarcaya, GerardoAzcarate, Silvana MarielaGoicoechea, Hector CasimiroARGENTINA RIVERSCHEMOMETRIC MODELINGSELF-DEPURATION MONITORINGSOURCE POLLUTIONSURFACE WATER QUALITYhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1In Argentina, both surface and ground water are used for a diverse priority purposes, such as drinking and basic hygiene, but they are also utilized as receivers of different types of industrial and urban and suburban effluents that affect their natural composition. This activity accompanied by the increase of the population and climate changes have activated the alarms of organism water management forced to implement strict quality controls previous to its use. In this work, a systematic evaluation of a set of physicochemical and biological parameters measured in 19 sampling sites during the period 2017–2019 is presented. Principal component analysis (PCA) and matrix augmentation-PCA (MA-PCA) were applied as exploratory analysis tools to visualize and interpret the information contained in the dataset. Both studies allowed to detect the relevant variables and to differentiate the samples based on pollution areas. These models led to similar conclusions; nonetheless, MA-PCA provided a more straightforward overview of the spatiotemporal variation of the samples in comparison to classical PCA. Finally, a significant and sensitive discriminant model (93% non-error rate) was developed to analyze and predict the self-depuration of the rivers. The excellent predictive ability achieved by this model makes its application suitable for the monitoring of the water quality.Fil: Jurado Zavaleta, Marcelo A.. Universidad Nacional de Salta; ArgentinaFil: Alcaraz, Mirta Raquel. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Peñaloza, Lidia Guadalupe. Universidad Nacional de Salta; ArgentinaFil: Boemo, Analía. Universidad Nacional de Salta; ArgentinaFil: Cardozo, Ana. No especifíca;Fil: Tarcaya, Gerardo. No especifíca;Fil: Azcarate, Silvana Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; ArgentinaFil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2021-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/151046Jurado Zavaleta, Marcelo A.; Alcaraz, Mirta Raquel; Peñaloza, Lidia Guadalupe; Boemo, Analía; Cardozo, Ana; et al.; Chemometric modeling for spatiotemporal characterization and self-depuration monitoring of surface water assessing the pollution sources impact of northern Argentina rivers; Elsevier Science; Microchemical Journal; 162; 3-2021; 1-400026-265XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0026265X20337838info:eu-repo/semantics/altIdentifier/doi/10.1016/j.microc.2020.105841info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:34:40Zoai:ri.conicet.gov.ar:11336/151046instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:34:40.388CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Chemometric modeling for spatiotemporal characterization and self-depuration monitoring of surface water assessing the pollution sources impact of northern Argentina rivers |
title |
Chemometric modeling for spatiotemporal characterization and self-depuration monitoring of surface water assessing the pollution sources impact of northern Argentina rivers |
spellingShingle |
Chemometric modeling for spatiotemporal characterization and self-depuration monitoring of surface water assessing the pollution sources impact of northern Argentina rivers Jurado Zavaleta, Marcelo A. ARGENTINA RIVERS CHEMOMETRIC MODELING SELF-DEPURATION MONITORING SOURCE POLLUTION SURFACE WATER QUALITY |
title_short |
Chemometric modeling for spatiotemporal characterization and self-depuration monitoring of surface water assessing the pollution sources impact of northern Argentina rivers |
title_full |
Chemometric modeling for spatiotemporal characterization and self-depuration monitoring of surface water assessing the pollution sources impact of northern Argentina rivers |
title_fullStr |
Chemometric modeling for spatiotemporal characterization and self-depuration monitoring of surface water assessing the pollution sources impact of northern Argentina rivers |
title_full_unstemmed |
Chemometric modeling for spatiotemporal characterization and self-depuration monitoring of surface water assessing the pollution sources impact of northern Argentina rivers |
title_sort |
Chemometric modeling for spatiotemporal characterization and self-depuration monitoring of surface water assessing the pollution sources impact of northern Argentina rivers |
dc.creator.none.fl_str_mv |
Jurado Zavaleta, Marcelo A. Alcaraz, Mirta Raquel Peñaloza, Lidia Guadalupe Boemo, Analía Cardozo, Ana Tarcaya, Gerardo Azcarate, Silvana Mariela Goicoechea, Hector Casimiro |
author |
Jurado Zavaleta, Marcelo A. |
author_facet |
Jurado Zavaleta, Marcelo A. Alcaraz, Mirta Raquel Peñaloza, Lidia Guadalupe Boemo, Analía Cardozo, Ana Tarcaya, Gerardo Azcarate, Silvana Mariela Goicoechea, Hector Casimiro |
author_role |
author |
author2 |
Alcaraz, Mirta Raquel Peñaloza, Lidia Guadalupe Boemo, Analía Cardozo, Ana Tarcaya, Gerardo Azcarate, Silvana Mariela Goicoechea, Hector Casimiro |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
ARGENTINA RIVERS CHEMOMETRIC MODELING SELF-DEPURATION MONITORING SOURCE POLLUTION SURFACE WATER QUALITY |
topic |
ARGENTINA RIVERS CHEMOMETRIC MODELING SELF-DEPURATION MONITORING SOURCE POLLUTION SURFACE WATER QUALITY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In Argentina, both surface and ground water are used for a diverse priority purposes, such as drinking and basic hygiene, but they are also utilized as receivers of different types of industrial and urban and suburban effluents that affect their natural composition. This activity accompanied by the increase of the population and climate changes have activated the alarms of organism water management forced to implement strict quality controls previous to its use. In this work, a systematic evaluation of a set of physicochemical and biological parameters measured in 19 sampling sites during the period 2017–2019 is presented. Principal component analysis (PCA) and matrix augmentation-PCA (MA-PCA) were applied as exploratory analysis tools to visualize and interpret the information contained in the dataset. Both studies allowed to detect the relevant variables and to differentiate the samples based on pollution areas. These models led to similar conclusions; nonetheless, MA-PCA provided a more straightforward overview of the spatiotemporal variation of the samples in comparison to classical PCA. Finally, a significant and sensitive discriminant model (93% non-error rate) was developed to analyze and predict the self-depuration of the rivers. The excellent predictive ability achieved by this model makes its application suitable for the monitoring of the water quality. Fil: Jurado Zavaleta, Marcelo A.. Universidad Nacional de Salta; Argentina Fil: Alcaraz, Mirta Raquel. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Peñaloza, Lidia Guadalupe. Universidad Nacional de Salta; Argentina Fil: Boemo, Analía. Universidad Nacional de Salta; Argentina Fil: Cardozo, Ana. No especifíca; Fil: Tarcaya, Gerardo. No especifíca; Fil: Azcarate, Silvana Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina Fil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
In Argentina, both surface and ground water are used for a diverse priority purposes, such as drinking and basic hygiene, but they are also utilized as receivers of different types of industrial and urban and suburban effluents that affect their natural composition. This activity accompanied by the increase of the population and climate changes have activated the alarms of organism water management forced to implement strict quality controls previous to its use. In this work, a systematic evaluation of a set of physicochemical and biological parameters measured in 19 sampling sites during the period 2017–2019 is presented. Principal component analysis (PCA) and matrix augmentation-PCA (MA-PCA) were applied as exploratory analysis tools to visualize and interpret the information contained in the dataset. Both studies allowed to detect the relevant variables and to differentiate the samples based on pollution areas. These models led to similar conclusions; nonetheless, MA-PCA provided a more straightforward overview of the spatiotemporal variation of the samples in comparison to classical PCA. Finally, a significant and sensitive discriminant model (93% non-error rate) was developed to analyze and predict the self-depuration of the rivers. The excellent predictive ability achieved by this model makes its application suitable for the monitoring of the water quality. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/151046 Jurado Zavaleta, Marcelo A.; Alcaraz, Mirta Raquel; Peñaloza, Lidia Guadalupe; Boemo, Analía; Cardozo, Ana; et al.; Chemometric modeling for spatiotemporal characterization and self-depuration monitoring of surface water assessing the pollution sources impact of northern Argentina rivers; Elsevier Science; Microchemical Journal; 162; 3-2021; 1-40 0026-265X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/151046 |
identifier_str_mv |
Jurado Zavaleta, Marcelo A.; Alcaraz, Mirta Raquel; Peñaloza, Lidia Guadalupe; Boemo, Analía; Cardozo, Ana; et al.; Chemometric modeling for spatiotemporal characterization and self-depuration monitoring of surface water assessing the pollution sources impact of northern Argentina rivers; Elsevier Science; Microchemical Journal; 162; 3-2021; 1-40 0026-265X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0026265X20337838 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.microc.2020.105841 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613074221268992 |
score |
13.070432 |