Chemometric Characterization of Sunflower Seeds
- Autores
- Monferrere, Gastón Lancelle; Azcarate, Silvana Mariela; Cantarelli, Miguel Ángel; Funes, Israel German Aristoteles; Camiña, José Manuel
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The spectroscopic characterization of different varieties of sunflower seeds based on their oleic acid content is proposed. One hundred fifty samples of sunflower seeds from different places of Argentina were analyzed by near-infrared diffuse reflectance spectroscopy (NIRDRS). Seed samples were grounded and sieved without chemical treatment previous to the analysis. For the characterization, the used multivariate methods were: principal component analysis (PCA), cluster analysis (CA), linear discriminant analysis (LDA), and partial least square discriminant analysis (PLS-DA). By using PCA, CA, and LDA, and from the point of view of varieties of sunflower seeds, 2 groups were differentiated, based on the concentration of oleic acid: a low oleic group, which ranged from 15% to 25% w/w oleic acid; and the other one (mid-high oleic varieties) which ranged from 26% to 90% w/w oleic acid. However, by using the PLS-DA, 3 groups were correctly differentiated based on the concentration of oleic acid: low oleic (from 15% to 25% w/w oleic acid); mid oleic (26% to 76% w/w oleic acid); and high oleic (≥ than 77% w/w oleic acid), demonstrating the high classification ability of this method. This multivariate characterization of sunflower seed varieties did not require chromatographic analysis to generate the matrix of concentrations, and only direct measures of NIRDRS spectra were required. This characterization can be useful to quickly know the variety of sunflower seed in the grain market. © 2012 Institute of Food Technologists®.
Fil: Monferrere, Gastón Lancelle. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas, Naturales y Agrimensura. Departamento de Agrimensura; Argentina
Fil: Azcarate, Silvana Mariela. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Cantarelli, Miguel Ángel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Departamento de Química; Argentina
Fil: Funes, Israel German Aristoteles. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue. Laboratorio de Investigaciones Bioquímicas y Químicas del Ambiente | Universidad Nacional del Comahue. Facultad de Ciencias Agrarias. Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue. Laboratorio de Investigaciones Bioquímicas y Químicas del Ambiente; Argentina
Fil: Camiña, José Manuel. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
CHEMOMETRIC
INFRARED SPECTROSCOPY
OLEIC ACID
SEEDS
SUNFLOWER - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/112823
Ver los metadatos del registro completo
id |
CONICETDig_9c44c77698ec6cdc349e8c92955b0346 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/112823 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Chemometric Characterization of Sunflower SeedsMonferrere, Gastón LancelleAzcarate, Silvana MarielaCantarelli, Miguel ÁngelFunes, Israel German AristotelesCamiña, José ManuelCHEMOMETRICINFRARED SPECTROSCOPYOLEIC ACIDSEEDSSUNFLOWERhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The spectroscopic characterization of different varieties of sunflower seeds based on their oleic acid content is proposed. One hundred fifty samples of sunflower seeds from different places of Argentina were analyzed by near-infrared diffuse reflectance spectroscopy (NIRDRS). Seed samples were grounded and sieved without chemical treatment previous to the analysis. For the characterization, the used multivariate methods were: principal component analysis (PCA), cluster analysis (CA), linear discriminant analysis (LDA), and partial least square discriminant analysis (PLS-DA). By using PCA, CA, and LDA, and from the point of view of varieties of sunflower seeds, 2 groups were differentiated, based on the concentration of oleic acid: a low oleic group, which ranged from 15% to 25% w/w oleic acid; and the other one (mid-high oleic varieties) which ranged from 26% to 90% w/w oleic acid. However, by using the PLS-DA, 3 groups were correctly differentiated based on the concentration of oleic acid: low oleic (from 15% to 25% w/w oleic acid); mid oleic (26% to 76% w/w oleic acid); and high oleic (≥ than 77% w/w oleic acid), demonstrating the high classification ability of this method. This multivariate characterization of sunflower seed varieties did not require chromatographic analysis to generate the matrix of concentrations, and only direct measures of NIRDRS spectra were required. This characterization can be useful to quickly know the variety of sunflower seed in the grain market. © 2012 Institute of Food Technologists®.Fil: Monferrere, Gastón Lancelle. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas, Naturales y Agrimensura. Departamento de Agrimensura; ArgentinaFil: Azcarate, Silvana Mariela. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cantarelli, Miguel Ángel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Departamento de Química; ArgentinaFil: Funes, Israel German Aristoteles. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue. Laboratorio de Investigaciones Bioquímicas y Químicas del Ambiente | Universidad Nacional del Comahue. Facultad de Ciencias Agrarias. Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue. Laboratorio de Investigaciones Bioquímicas y Químicas del Ambiente; ArgentinaFil: Camiña, José Manuel. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaWiley Blackwell Publishing, Inc2012-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/112823Monferrere, Gastón Lancelle; Azcarate, Silvana Mariela; Cantarelli, Miguel Ángel; Funes, Israel German Aristoteles; Camiña, José Manuel; Chemometric Characterization of Sunflower Seeds; Wiley Blackwell Publishing, Inc; Journal of Food Science; 77; 9; 9-2012; 1018-10220022-1147CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1750-3841.2012.02881.xinfo:eu-repo/semantics/altIdentifier/doi/10.1111/j.1750-3841.2012.02881.xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:00:21Zoai:ri.conicet.gov.ar:11336/112823instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:00:22.25CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Chemometric Characterization of Sunflower Seeds |
title |
Chemometric Characterization of Sunflower Seeds |
spellingShingle |
Chemometric Characterization of Sunflower Seeds Monferrere, Gastón Lancelle CHEMOMETRIC INFRARED SPECTROSCOPY OLEIC ACID SEEDS SUNFLOWER |
title_short |
Chemometric Characterization of Sunflower Seeds |
title_full |
Chemometric Characterization of Sunflower Seeds |
title_fullStr |
Chemometric Characterization of Sunflower Seeds |
title_full_unstemmed |
Chemometric Characterization of Sunflower Seeds |
title_sort |
Chemometric Characterization of Sunflower Seeds |
dc.creator.none.fl_str_mv |
Monferrere, Gastón Lancelle Azcarate, Silvana Mariela Cantarelli, Miguel Ángel Funes, Israel German Aristoteles Camiña, José Manuel |
author |
Monferrere, Gastón Lancelle |
author_facet |
Monferrere, Gastón Lancelle Azcarate, Silvana Mariela Cantarelli, Miguel Ángel Funes, Israel German Aristoteles Camiña, José Manuel |
author_role |
author |
author2 |
Azcarate, Silvana Mariela Cantarelli, Miguel Ángel Funes, Israel German Aristoteles Camiña, José Manuel |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
CHEMOMETRIC INFRARED SPECTROSCOPY OLEIC ACID SEEDS SUNFLOWER |
topic |
CHEMOMETRIC INFRARED SPECTROSCOPY OLEIC ACID SEEDS SUNFLOWER |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The spectroscopic characterization of different varieties of sunflower seeds based on their oleic acid content is proposed. One hundred fifty samples of sunflower seeds from different places of Argentina were analyzed by near-infrared diffuse reflectance spectroscopy (NIRDRS). Seed samples were grounded and sieved without chemical treatment previous to the analysis. For the characterization, the used multivariate methods were: principal component analysis (PCA), cluster analysis (CA), linear discriminant analysis (LDA), and partial least square discriminant analysis (PLS-DA). By using PCA, CA, and LDA, and from the point of view of varieties of sunflower seeds, 2 groups were differentiated, based on the concentration of oleic acid: a low oleic group, which ranged from 15% to 25% w/w oleic acid; and the other one (mid-high oleic varieties) which ranged from 26% to 90% w/w oleic acid. However, by using the PLS-DA, 3 groups were correctly differentiated based on the concentration of oleic acid: low oleic (from 15% to 25% w/w oleic acid); mid oleic (26% to 76% w/w oleic acid); and high oleic (≥ than 77% w/w oleic acid), demonstrating the high classification ability of this method. This multivariate characterization of sunflower seed varieties did not require chromatographic analysis to generate the matrix of concentrations, and only direct measures of NIRDRS spectra were required. This characterization can be useful to quickly know the variety of sunflower seed in the grain market. © 2012 Institute of Food Technologists®. Fil: Monferrere, Gastón Lancelle. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas, Naturales y Agrimensura. Departamento de Agrimensura; Argentina Fil: Azcarate, Silvana Mariela. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Cantarelli, Miguel Ángel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Departamento de Química; Argentina Fil: Funes, Israel German Aristoteles. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue. Laboratorio de Investigaciones Bioquímicas y Químicas del Ambiente | Universidad Nacional del Comahue. Facultad de Ciencias Agrarias. Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue. Laboratorio de Investigaciones Bioquímicas y Químicas del Ambiente; Argentina Fil: Camiña, José Manuel. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
The spectroscopic characterization of different varieties of sunflower seeds based on their oleic acid content is proposed. One hundred fifty samples of sunflower seeds from different places of Argentina were analyzed by near-infrared diffuse reflectance spectroscopy (NIRDRS). Seed samples were grounded and sieved without chemical treatment previous to the analysis. For the characterization, the used multivariate methods were: principal component analysis (PCA), cluster analysis (CA), linear discriminant analysis (LDA), and partial least square discriminant analysis (PLS-DA). By using PCA, CA, and LDA, and from the point of view of varieties of sunflower seeds, 2 groups were differentiated, based on the concentration of oleic acid: a low oleic group, which ranged from 15% to 25% w/w oleic acid; and the other one (mid-high oleic varieties) which ranged from 26% to 90% w/w oleic acid. However, by using the PLS-DA, 3 groups were correctly differentiated based on the concentration of oleic acid: low oleic (from 15% to 25% w/w oleic acid); mid oleic (26% to 76% w/w oleic acid); and high oleic (≥ than 77% w/w oleic acid), demonstrating the high classification ability of this method. This multivariate characterization of sunflower seed varieties did not require chromatographic analysis to generate the matrix of concentrations, and only direct measures of NIRDRS spectra were required. This characterization can be useful to quickly know the variety of sunflower seed in the grain market. © 2012 Institute of Food Technologists®. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/112823 Monferrere, Gastón Lancelle; Azcarate, Silvana Mariela; Cantarelli, Miguel Ángel; Funes, Israel German Aristoteles; Camiña, José Manuel; Chemometric Characterization of Sunflower Seeds; Wiley Blackwell Publishing, Inc; Journal of Food Science; 77; 9; 9-2012; 1018-1022 0022-1147 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/112823 |
identifier_str_mv |
Monferrere, Gastón Lancelle; Azcarate, Silvana Mariela; Cantarelli, Miguel Ángel; Funes, Israel German Aristoteles; Camiña, José Manuel; Chemometric Characterization of Sunflower Seeds; Wiley Blackwell Publishing, Inc; Journal of Food Science; 77; 9; 9-2012; 1018-1022 0022-1147 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1750-3841.2012.02881.x info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1750-3841.2012.02881.x |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269634569437185 |
score |
13.13397 |