Intuitionistic Modal Algebras

Autores
Celani, Sergio Arturo; Rivieccio, Umberto
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Recent research on algebraic models of quasi-Nelson logic has brought new attention to a number of classes of algebras which result from enriching (subreducts of) Heyting algebras with a special modal operator, known in the literature as a nucleus. Among these various algebraic structures, for which we employ the umbrella term intuitionistic modal algebras, some have been studied since at least the 1970s, usually within the framework of topology and sheaf theory. Others may seem more exotic, for their primitive operations arise from algebraic terms of the intuitionistic modal language which have not been previously considered. We shall for instance investigate the variety of weak implicative semilattices, whose members are (non-necessarily distributive) meet semilattices endowed with a nucleus and an implication operation which is not a relative pseudo-complement but satisfies the postulates of Celani and Jansana’s strict implication. For each of these new classes of algebras we establish a representation and a topological duality which generalize the known ones for Heyting algebras enriched with a nucleus.
Fil: Celani, Sergio Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires; Argentina
Fil: Rivieccio, Umberto. Universidad Nacional de Educación a Distancia; España
Materia
FRAGMENTS
IMPLICATIVE SEMILATTICES
INTUITIONISTIC MODAL ALGEBRAS
NUCLEAR HEYTING ALGEBRAS
NUCLEI
QUASI-NELSON ALGEBRAS
REPRESENTATION
TOPOLOGICAL DUALITY
WEAK HEYTING ALGEBRAS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/233178

id CONICETDig_d8219d5070bbb8e5879bb64a489e2af1
oai_identifier_str oai:ri.conicet.gov.ar:11336/233178
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Intuitionistic Modal AlgebrasCelani, Sergio ArturoRivieccio, UmbertoFRAGMENTSIMPLICATIVE SEMILATTICESINTUITIONISTIC MODAL ALGEBRASNUCLEAR HEYTING ALGEBRASNUCLEIQUASI-NELSON ALGEBRASREPRESENTATIONTOPOLOGICAL DUALITYWEAK HEYTING ALGEBRAShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Recent research on algebraic models of quasi-Nelson logic has brought new attention to a number of classes of algebras which result from enriching (subreducts of) Heyting algebras with a special modal operator, known in the literature as a nucleus. Among these various algebraic structures, for which we employ the umbrella term intuitionistic modal algebras, some have been studied since at least the 1970s, usually within the framework of topology and sheaf theory. Others may seem more exotic, for their primitive operations arise from algebraic terms of the intuitionistic modal language which have not been previously considered. We shall for instance investigate the variety of weak implicative semilattices, whose members are (non-necessarily distributive) meet semilattices endowed with a nucleus and an implication operation which is not a relative pseudo-complement but satisfies the postulates of Celani and Jansana’s strict implication. For each of these new classes of algebras we establish a representation and a topological duality which generalize the known ones for Heyting algebras enriched with a nucleus.Fil: Celani, Sergio Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires; ArgentinaFil: Rivieccio, Umberto. Universidad Nacional de Educación a Distancia; EspañaSpringer2023-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/233178Celani, Sergio Arturo; Rivieccio, Umberto; Intuitionistic Modal Algebras; Springer; Studia Logica; 2023; 8-2023; 1-500039-32151572-8730CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11225-023-10065-2info:eu-repo/semantics/altIdentifier/doi/10.1007/s11225-023-10065-2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:26Zoai:ri.conicet.gov.ar:11336/233178instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:26.285CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Intuitionistic Modal Algebras
title Intuitionistic Modal Algebras
spellingShingle Intuitionistic Modal Algebras
Celani, Sergio Arturo
FRAGMENTS
IMPLICATIVE SEMILATTICES
INTUITIONISTIC MODAL ALGEBRAS
NUCLEAR HEYTING ALGEBRAS
NUCLEI
QUASI-NELSON ALGEBRAS
REPRESENTATION
TOPOLOGICAL DUALITY
WEAK HEYTING ALGEBRAS
title_short Intuitionistic Modal Algebras
title_full Intuitionistic Modal Algebras
title_fullStr Intuitionistic Modal Algebras
title_full_unstemmed Intuitionistic Modal Algebras
title_sort Intuitionistic Modal Algebras
dc.creator.none.fl_str_mv Celani, Sergio Arturo
Rivieccio, Umberto
author Celani, Sergio Arturo
author_facet Celani, Sergio Arturo
Rivieccio, Umberto
author_role author
author2 Rivieccio, Umberto
author2_role author
dc.subject.none.fl_str_mv FRAGMENTS
IMPLICATIVE SEMILATTICES
INTUITIONISTIC MODAL ALGEBRAS
NUCLEAR HEYTING ALGEBRAS
NUCLEI
QUASI-NELSON ALGEBRAS
REPRESENTATION
TOPOLOGICAL DUALITY
WEAK HEYTING ALGEBRAS
topic FRAGMENTS
IMPLICATIVE SEMILATTICES
INTUITIONISTIC MODAL ALGEBRAS
NUCLEAR HEYTING ALGEBRAS
NUCLEI
QUASI-NELSON ALGEBRAS
REPRESENTATION
TOPOLOGICAL DUALITY
WEAK HEYTING ALGEBRAS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Recent research on algebraic models of quasi-Nelson logic has brought new attention to a number of classes of algebras which result from enriching (subreducts of) Heyting algebras with a special modal operator, known in the literature as a nucleus. Among these various algebraic structures, for which we employ the umbrella term intuitionistic modal algebras, some have been studied since at least the 1970s, usually within the framework of topology and sheaf theory. Others may seem more exotic, for their primitive operations arise from algebraic terms of the intuitionistic modal language which have not been previously considered. We shall for instance investigate the variety of weak implicative semilattices, whose members are (non-necessarily distributive) meet semilattices endowed with a nucleus and an implication operation which is not a relative pseudo-complement but satisfies the postulates of Celani and Jansana’s strict implication. For each of these new classes of algebras we establish a representation and a topological duality which generalize the known ones for Heyting algebras enriched with a nucleus.
Fil: Celani, Sergio Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires; Argentina
Fil: Rivieccio, Umberto. Universidad Nacional de Educación a Distancia; España
description Recent research on algebraic models of quasi-Nelson logic has brought new attention to a number of classes of algebras which result from enriching (subreducts of) Heyting algebras with a special modal operator, known in the literature as a nucleus. Among these various algebraic structures, for which we employ the umbrella term intuitionistic modal algebras, some have been studied since at least the 1970s, usually within the framework of topology and sheaf theory. Others may seem more exotic, for their primitive operations arise from algebraic terms of the intuitionistic modal language which have not been previously considered. We shall for instance investigate the variety of weak implicative semilattices, whose members are (non-necessarily distributive) meet semilattices endowed with a nucleus and an implication operation which is not a relative pseudo-complement but satisfies the postulates of Celani and Jansana’s strict implication. For each of these new classes of algebras we establish a representation and a topological duality which generalize the known ones for Heyting algebras enriched with a nucleus.
publishDate 2023
dc.date.none.fl_str_mv 2023-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/233178
Celani, Sergio Arturo; Rivieccio, Umberto; Intuitionistic Modal Algebras; Springer; Studia Logica; 2023; 8-2023; 1-50
0039-3215
1572-8730
CONICET Digital
CONICET
url http://hdl.handle.net/11336/233178
identifier_str_mv Celani, Sergio Arturo; Rivieccio, Umberto; Intuitionistic Modal Algebras; Springer; Studia Logica; 2023; 8-2023; 1-50
0039-3215
1572-8730
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11225-023-10065-2
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11225-023-10065-2
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613103658991616
score 13.070432