De Morgan Heyting algebras satisfying the identity x n (′*) ≈ x ( n +1)(′*)
- Autores
- Castaño, Valeria Marcela; Muñoz Santis, Marcela Paola
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we investigate the sequence of subvarieties SDHn of De Morgan Heyting algebras characterized by the identity x^n (´∗) ≈ x^(n+1)(´∗) . We obtain necessary and sufficient conditions for a De Morgan Heyting algebra to be in SDH_1 by means of its space of prime filters, and we characterize subdirectly irreducible and simple algebras in SDH_1 . We extend these results for finite algebras in the general case SDH_n .
Fil: Castaño, Valeria Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina. Universidad Nacional del Comahue; Argentina
Fil: Muñoz Santis, Marcela Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina. Universidad Nacional del Comahue; Argentina - Materia
-
DE MORGAN HEYTING ALGEBRA
TOPOLOGICAL DUALITY
PRIESTEY SPACE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/242351
Ver los metadatos del registro completo
id |
CONICETDig_a77cc816381d8f67e2b6487f39327dfb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/242351 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
De Morgan Heyting algebras satisfying the identity x n (′*) ≈ x ( n +1)(′*)Castaño, Valeria MarcelaMuñoz Santis, Marcela PaolaDE MORGAN HEYTING ALGEBRATOPOLOGICAL DUALITYPRIESTEY SPACEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we investigate the sequence of subvarieties SDHn of De Morgan Heyting algebras characterized by the identity x^n (´∗) ≈ x^(n+1)(´∗) . We obtain necessary and sufficient conditions for a De Morgan Heyting algebra to be in SDH_1 by means of its space of prime filters, and we characterize subdirectly irreducible and simple algebras in SDH_1 . We extend these results for finite algebras in the general case SDH_n .Fil: Castaño, Valeria Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina. Universidad Nacional del Comahue; ArgentinaFil: Muñoz Santis, Marcela Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina. Universidad Nacional del Comahue; ArgentinaWiley VCH Verlag2011-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/242351Castaño, Valeria Marcela; Muñoz Santis, Marcela Paola; De Morgan Heyting algebras satisfying the identity x n (′*) ≈ x ( n +1)(′*); Wiley VCH Verlag; Mathematical Logic Quarterly; 57; 3; 6-2011; 236-2450942-5616CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/malq.200910122info:eu-repo/semantics/altIdentifier/doi/10.1002/malq.200910122info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:15:28Zoai:ri.conicet.gov.ar:11336/242351instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:15:29.161CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
De Morgan Heyting algebras satisfying the identity x n (′*) ≈ x ( n +1)(′*) |
title |
De Morgan Heyting algebras satisfying the identity x n (′*) ≈ x ( n +1)(′*) |
spellingShingle |
De Morgan Heyting algebras satisfying the identity x n (′*) ≈ x ( n +1)(′*) Castaño, Valeria Marcela DE MORGAN HEYTING ALGEBRA TOPOLOGICAL DUALITY PRIESTEY SPACE |
title_short |
De Morgan Heyting algebras satisfying the identity x n (′*) ≈ x ( n +1)(′*) |
title_full |
De Morgan Heyting algebras satisfying the identity x n (′*) ≈ x ( n +1)(′*) |
title_fullStr |
De Morgan Heyting algebras satisfying the identity x n (′*) ≈ x ( n +1)(′*) |
title_full_unstemmed |
De Morgan Heyting algebras satisfying the identity x n (′*) ≈ x ( n +1)(′*) |
title_sort |
De Morgan Heyting algebras satisfying the identity x n (′*) ≈ x ( n +1)(′*) |
dc.creator.none.fl_str_mv |
Castaño, Valeria Marcela Muñoz Santis, Marcela Paola |
author |
Castaño, Valeria Marcela |
author_facet |
Castaño, Valeria Marcela Muñoz Santis, Marcela Paola |
author_role |
author |
author2 |
Muñoz Santis, Marcela Paola |
author2_role |
author |
dc.subject.none.fl_str_mv |
DE MORGAN HEYTING ALGEBRA TOPOLOGICAL DUALITY PRIESTEY SPACE |
topic |
DE MORGAN HEYTING ALGEBRA TOPOLOGICAL DUALITY PRIESTEY SPACE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we investigate the sequence of subvarieties SDHn of De Morgan Heyting algebras characterized by the identity x^n (´∗) ≈ x^(n+1)(´∗) . We obtain necessary and sufficient conditions for a De Morgan Heyting algebra to be in SDH_1 by means of its space of prime filters, and we characterize subdirectly irreducible and simple algebras in SDH_1 . We extend these results for finite algebras in the general case SDH_n . Fil: Castaño, Valeria Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina. Universidad Nacional del Comahue; Argentina Fil: Muñoz Santis, Marcela Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina. Universidad Nacional del Comahue; Argentina |
description |
In this paper we investigate the sequence of subvarieties SDHn of De Morgan Heyting algebras characterized by the identity x^n (´∗) ≈ x^(n+1)(´∗) . We obtain necessary and sufficient conditions for a De Morgan Heyting algebra to be in SDH_1 by means of its space of prime filters, and we characterize subdirectly irreducible and simple algebras in SDH_1 . We extend these results for finite algebras in the general case SDH_n . |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/242351 Castaño, Valeria Marcela; Muñoz Santis, Marcela Paola; De Morgan Heyting algebras satisfying the identity x n (′*) ≈ x ( n +1)(′*); Wiley VCH Verlag; Mathematical Logic Quarterly; 57; 3; 6-2011; 236-245 0942-5616 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/242351 |
identifier_str_mv |
Castaño, Valeria Marcela; Muñoz Santis, Marcela Paola; De Morgan Heyting algebras satisfying the identity x n (′*) ≈ x ( n +1)(′*); Wiley VCH Verlag; Mathematical Logic Quarterly; 57; 3; 6-2011; 236-245 0942-5616 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/malq.200910122 info:eu-repo/semantics/altIdentifier/doi/10.1002/malq.200910122 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Wiley VCH Verlag |
publisher.none.fl_str_mv |
Wiley VCH Verlag |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980834597928960 |
score |
12.993085 |