De Morgan Heyting algebras satisfying the identity x n (′*) ≈ x ( n +1)(′*)

Autores
Castaño, Valeria Marcela; Muñoz Santis, Marcela Paola
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we investigate the sequence of subvarieties SDHn of De Morgan Heyting algebras characterized by the identity x^n (´∗) ≈ x^(n+1)(´∗) . We obtain necessary and sufficient conditions for a De Morgan Heyting algebra to be in SDH_1 by means of its space of prime filters, and we characterize subdirectly irreducible and simple algebras in SDH_1 . We extend these results for finite algebras in the general case SDH_n .
Fil: Castaño, Valeria Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina. Universidad Nacional del Comahue; Argentina
Fil: Muñoz Santis, Marcela Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina. Universidad Nacional del Comahue; Argentina
Materia
DE MORGAN HEYTING ALGEBRA
TOPOLOGICAL DUALITY
PRIESTEY SPACE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/242351

id CONICETDig_a77cc816381d8f67e2b6487f39327dfb
oai_identifier_str oai:ri.conicet.gov.ar:11336/242351
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling De Morgan Heyting algebras satisfying the identity x n (′*) ≈ x ( n +1)(′*)Castaño, Valeria MarcelaMuñoz Santis, Marcela PaolaDE MORGAN HEYTING ALGEBRATOPOLOGICAL DUALITYPRIESTEY SPACEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we investigate the sequence of subvarieties SDHn of De Morgan Heyting algebras characterized by the identity x^n (´∗) ≈ x^(n+1)(´∗) . We obtain necessary and sufficient conditions for a De Morgan Heyting algebra to be in SDH_1 by means of its space of prime filters, and we characterize subdirectly irreducible and simple algebras in SDH_1 . We extend these results for finite algebras in the general case SDH_n .Fil: Castaño, Valeria Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina. Universidad Nacional del Comahue; ArgentinaFil: Muñoz Santis, Marcela Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina. Universidad Nacional del Comahue; ArgentinaWiley VCH Verlag2011-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/242351Castaño, Valeria Marcela; Muñoz Santis, Marcela Paola; De Morgan Heyting algebras satisfying the identity x n (′*) ≈ x ( n +1)(′*); Wiley VCH Verlag; Mathematical Logic Quarterly; 57; 3; 6-2011; 236-2450942-5616CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/malq.200910122info:eu-repo/semantics/altIdentifier/doi/10.1002/malq.200910122info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:15:28Zoai:ri.conicet.gov.ar:11336/242351instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:15:29.161CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv De Morgan Heyting algebras satisfying the identity x n (′*) ≈ x ( n +1)(′*)
title De Morgan Heyting algebras satisfying the identity x n (′*) ≈ x ( n +1)(′*)
spellingShingle De Morgan Heyting algebras satisfying the identity x n (′*) ≈ x ( n +1)(′*)
Castaño, Valeria Marcela
DE MORGAN HEYTING ALGEBRA
TOPOLOGICAL DUALITY
PRIESTEY SPACE
title_short De Morgan Heyting algebras satisfying the identity x n (′*) ≈ x ( n +1)(′*)
title_full De Morgan Heyting algebras satisfying the identity x n (′*) ≈ x ( n +1)(′*)
title_fullStr De Morgan Heyting algebras satisfying the identity x n (′*) ≈ x ( n +1)(′*)
title_full_unstemmed De Morgan Heyting algebras satisfying the identity x n (′*) ≈ x ( n +1)(′*)
title_sort De Morgan Heyting algebras satisfying the identity x n (′*) ≈ x ( n +1)(′*)
dc.creator.none.fl_str_mv Castaño, Valeria Marcela
Muñoz Santis, Marcela Paola
author Castaño, Valeria Marcela
author_facet Castaño, Valeria Marcela
Muñoz Santis, Marcela Paola
author_role author
author2 Muñoz Santis, Marcela Paola
author2_role author
dc.subject.none.fl_str_mv DE MORGAN HEYTING ALGEBRA
TOPOLOGICAL DUALITY
PRIESTEY SPACE
topic DE MORGAN HEYTING ALGEBRA
TOPOLOGICAL DUALITY
PRIESTEY SPACE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we investigate the sequence of subvarieties SDHn of De Morgan Heyting algebras characterized by the identity x^n (´∗) ≈ x^(n+1)(´∗) . We obtain necessary and sufficient conditions for a De Morgan Heyting algebra to be in SDH_1 by means of its space of prime filters, and we characterize subdirectly irreducible and simple algebras in SDH_1 . We extend these results for finite algebras in the general case SDH_n .
Fil: Castaño, Valeria Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina. Universidad Nacional del Comahue; Argentina
Fil: Muñoz Santis, Marcela Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia; Argentina. Universidad Nacional del Comahue; Argentina
description In this paper we investigate the sequence of subvarieties SDHn of De Morgan Heyting algebras characterized by the identity x^n (´∗) ≈ x^(n+1)(´∗) . We obtain necessary and sufficient conditions for a De Morgan Heyting algebra to be in SDH_1 by means of its space of prime filters, and we characterize subdirectly irreducible and simple algebras in SDH_1 . We extend these results for finite algebras in the general case SDH_n .
publishDate 2011
dc.date.none.fl_str_mv 2011-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/242351
Castaño, Valeria Marcela; Muñoz Santis, Marcela Paola; De Morgan Heyting algebras satisfying the identity x n (′*) ≈ x ( n +1)(′*); Wiley VCH Verlag; Mathematical Logic Quarterly; 57; 3; 6-2011; 236-245
0942-5616
CONICET Digital
CONICET
url http://hdl.handle.net/11336/242351
identifier_str_mv Castaño, Valeria Marcela; Muñoz Santis, Marcela Paola; De Morgan Heyting algebras satisfying the identity x n (′*) ≈ x ( n +1)(′*); Wiley VCH Verlag; Mathematical Logic Quarterly; 57; 3; 6-2011; 236-245
0942-5616
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/malq.200910122
info:eu-repo/semantics/altIdentifier/doi/10.1002/malq.200910122
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley VCH Verlag
publisher.none.fl_str_mv Wiley VCH Verlag
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980834597928960
score 12.993085