On Some Semi-Intuitionistic Logics
- Autores
- Cornejo, Juan Manuel; Viglizzo, Ignacio Dario
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Semi-intuitionistic logic is the logic counterpart to semi-Heyting algebras, which were defined by H. P. Sankappanavar as a generalization of Heyting algebras. We present a new, more streamlined set of axioms for semi-intuitionistic logic, which we prove translationally equivalent to the original one. We then study some formulas that define a semi-Heyting implication, and specialize this study to the case in which the formulas use only the lattice operators and the intuitionistic implication. We prove then that all the logics thus obtained are equivalent to intuitionistic logic, and give their Kripke semantics.
Fil: Cornejo, Juan Manuel. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina
Fil: Viglizzo, Ignacio Dario. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina - Materia
-
Heyting Algebras
Intuitionistic Logic
Semi-Heyting Algebras
Semi-Intuitionistic Logic - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/77848
Ver los metadatos del registro completo
id |
CONICETDig_c5fc33af3253e33a0f2e6d32002e4a37 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/77848 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On Some Semi-Intuitionistic LogicsCornejo, Juan ManuelViglizzo, Ignacio DarioHeyting AlgebrasIntuitionistic LogicSemi-Heyting AlgebrasSemi-Intuitionistic Logichttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Semi-intuitionistic logic is the logic counterpart to semi-Heyting algebras, which were defined by H. P. Sankappanavar as a generalization of Heyting algebras. We present a new, more streamlined set of axioms for semi-intuitionistic logic, which we prove translationally equivalent to the original one. We then study some formulas that define a semi-Heyting implication, and specialize this study to the case in which the formulas use only the lattice operators and the intuitionistic implication. We prove then that all the logics thus obtained are equivalent to intuitionistic logic, and give their Kripke semantics.Fil: Cornejo, Juan Manuel. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; ArgentinaFil: Viglizzo, Ignacio Dario. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; ArgentinaSpringer2015-04-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/77848Cornejo, Juan Manuel; Viglizzo, Ignacio Dario; On Some Semi-Intuitionistic Logics; Springer; Studia Logica; 103; 2; 5-4-2015; 303-3440039-32151572-8730CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11225-014-9568-xinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11225-014-9568-xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:23Zoai:ri.conicet.gov.ar:11336/77848instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:23.8CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On Some Semi-Intuitionistic Logics |
title |
On Some Semi-Intuitionistic Logics |
spellingShingle |
On Some Semi-Intuitionistic Logics Cornejo, Juan Manuel Heyting Algebras Intuitionistic Logic Semi-Heyting Algebras Semi-Intuitionistic Logic |
title_short |
On Some Semi-Intuitionistic Logics |
title_full |
On Some Semi-Intuitionistic Logics |
title_fullStr |
On Some Semi-Intuitionistic Logics |
title_full_unstemmed |
On Some Semi-Intuitionistic Logics |
title_sort |
On Some Semi-Intuitionistic Logics |
dc.creator.none.fl_str_mv |
Cornejo, Juan Manuel Viglizzo, Ignacio Dario |
author |
Cornejo, Juan Manuel |
author_facet |
Cornejo, Juan Manuel Viglizzo, Ignacio Dario |
author_role |
author |
author2 |
Viglizzo, Ignacio Dario |
author2_role |
author |
dc.subject.none.fl_str_mv |
Heyting Algebras Intuitionistic Logic Semi-Heyting Algebras Semi-Intuitionistic Logic |
topic |
Heyting Algebras Intuitionistic Logic Semi-Heyting Algebras Semi-Intuitionistic Logic |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Semi-intuitionistic logic is the logic counterpart to semi-Heyting algebras, which were defined by H. P. Sankappanavar as a generalization of Heyting algebras. We present a new, more streamlined set of axioms for semi-intuitionistic logic, which we prove translationally equivalent to the original one. We then study some formulas that define a semi-Heyting implication, and specialize this study to the case in which the formulas use only the lattice operators and the intuitionistic implication. We prove then that all the logics thus obtained are equivalent to intuitionistic logic, and give their Kripke semantics. Fil: Cornejo, Juan Manuel. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina Fil: Viglizzo, Ignacio Dario. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina |
description |
Semi-intuitionistic logic is the logic counterpart to semi-Heyting algebras, which were defined by H. P. Sankappanavar as a generalization of Heyting algebras. We present a new, more streamlined set of axioms for semi-intuitionistic logic, which we prove translationally equivalent to the original one. We then study some formulas that define a semi-Heyting implication, and specialize this study to the case in which the formulas use only the lattice operators and the intuitionistic implication. We prove then that all the logics thus obtained are equivalent to intuitionistic logic, and give their Kripke semantics. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-04-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/77848 Cornejo, Juan Manuel; Viglizzo, Ignacio Dario; On Some Semi-Intuitionistic Logics; Springer; Studia Logica; 103; 2; 5-4-2015; 303-344 0039-3215 1572-8730 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/77848 |
identifier_str_mv |
Cornejo, Juan Manuel; Viglizzo, Ignacio Dario; On Some Semi-Intuitionistic Logics; Springer; Studia Logica; 103; 2; 5-4-2015; 303-344 0039-3215 1572-8730 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s11225-014-9568-x info:eu-repo/semantics/altIdentifier/doi/10.1007/s11225-014-9568-x |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269956543086592 |
score |
13.13397 |