Frontal operators in weak Heyting algebras

Autores
Celani, Sergio A.; San Martín, Hernán Javier
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we shall introduce the variety FWHA of frontal weak Heyting algebras as a generalization of the frontal Heyting algebras introduced by Leo Esakia in [10]. A frontal operator in a weak Heyting algebra A is an expansive operator τ preserving nite meets which also satis es the equation τ (a) ≤ b ∨ (b → a), for all a; b ∈ A. These operators were studied from an algebraic, logical and topological point of view by Leo Esakia in [10]. We will study frontal operators in weak Heyting algebras and we will consider two examples of them. We will give a Priestley duality for the category of frontal weak Heyting algebras in terms of relational spaces ⟨X;≤; T;R⟩ where ⟨X;≤; T⟩ is a WH- space [6], and R is an additional binary relation used to interpret the modal operator. We will also study the WH-algebras with successor and the WH-algebras with gamma. For these varieties we will give two topological dualities. The rst one is based on the representation given for the frontal weak Heyting algebras. The second one is based on certain particular classes of WH-spaces.
Facultad de Ciencias Exactas
Consejo Nacional de Investigaciones Científicas y Técnicas
Materia
Matemática
modal operators
frontal operators
weak Heyting algebras
Priestley duality
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/114720

id SEDICI_03202ee14046a56d8b632b3c6c95dae9
oai_identifier_str oai:sedici.unlp.edu.ar:10915/114720
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Frontal operators in weak Heyting algebrasCelani, Sergio A.San Martín, Hernán JavierMatemáticamodal operatorsfrontal operatorsweak Heyting algebrasPriestley dualityIn this paper we shall introduce the variety FWHA of frontal weak Heyting algebras as a generalization of the frontal Heyting algebras introduced by Leo Esakia in [10]. A frontal operator in a weak Heyting algebra A is an expansive operator τ preserving nite meets which also satis es the equation τ (a) ≤ b ∨ (b → a), for all a; b ∈ A. These operators were studied from an algebraic, logical and topological point of view by Leo Esakia in [10]. We will study frontal operators in weak Heyting algebras and we will consider two examples of them. We will give a Priestley duality for the category of frontal weak Heyting algebras in terms of relational spaces ⟨X;≤; T;R⟩ where ⟨X;≤; T⟩ is a WH- space [6], and R is an additional binary relation used to interpret the modal operator. We will also study the WH-algebras with successor and the WH-algebras with gamma. For these varieties we will give two topological dualities. The rst one is based on the representation given for the frontal weak Heyting algebras. The second one is based on certain particular classes of WH-spaces.Facultad de Ciencias ExactasConsejo Nacional de Investigaciones Científicas y Técnicas2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf91-114http://sedici.unlp.edu.ar/handle/10915/114720enginfo:eu-repo/semantics/altIdentifier/issn/1572-8730info:eu-repo/semantics/altIdentifier/doi/10.1007/s11225-012-9390-2info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:26:44Zoai:sedici.unlp.edu.ar:10915/114720Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:26:44.69SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Frontal operators in weak Heyting algebras
title Frontal operators in weak Heyting algebras
spellingShingle Frontal operators in weak Heyting algebras
Celani, Sergio A.
Matemática
modal operators
frontal operators
weak Heyting algebras
Priestley duality
title_short Frontal operators in weak Heyting algebras
title_full Frontal operators in weak Heyting algebras
title_fullStr Frontal operators in weak Heyting algebras
title_full_unstemmed Frontal operators in weak Heyting algebras
title_sort Frontal operators in weak Heyting algebras
dc.creator.none.fl_str_mv Celani, Sergio A.
San Martín, Hernán Javier
author Celani, Sergio A.
author_facet Celani, Sergio A.
San Martín, Hernán Javier
author_role author
author2 San Martín, Hernán Javier
author2_role author
dc.subject.none.fl_str_mv Matemática
modal operators
frontal operators
weak Heyting algebras
Priestley duality
topic Matemática
modal operators
frontal operators
weak Heyting algebras
Priestley duality
dc.description.none.fl_txt_mv In this paper we shall introduce the variety FWHA of frontal weak Heyting algebras as a generalization of the frontal Heyting algebras introduced by Leo Esakia in [10]. A frontal operator in a weak Heyting algebra A is an expansive operator τ preserving nite meets which also satis es the equation τ (a) ≤ b ∨ (b → a), for all a; b ∈ A. These operators were studied from an algebraic, logical and topological point of view by Leo Esakia in [10]. We will study frontal operators in weak Heyting algebras and we will consider two examples of them. We will give a Priestley duality for the category of frontal weak Heyting algebras in terms of relational spaces ⟨X;≤; T;R⟩ where ⟨X;≤; T⟩ is a WH- space [6], and R is an additional binary relation used to interpret the modal operator. We will also study the WH-algebras with successor and the WH-algebras with gamma. For these varieties we will give two topological dualities. The rst one is based on the representation given for the frontal weak Heyting algebras. The second one is based on certain particular classes of WH-spaces.
Facultad de Ciencias Exactas
Consejo Nacional de Investigaciones Científicas y Técnicas
description In this paper we shall introduce the variety FWHA of frontal weak Heyting algebras as a generalization of the frontal Heyting algebras introduced by Leo Esakia in [10]. A frontal operator in a weak Heyting algebra A is an expansive operator τ preserving nite meets which also satis es the equation τ (a) ≤ b ∨ (b → a), for all a; b ∈ A. These operators were studied from an algebraic, logical and topological point of view by Leo Esakia in [10]. We will study frontal operators in weak Heyting algebras and we will consider two examples of them. We will give a Priestley duality for the category of frontal weak Heyting algebras in terms of relational spaces ⟨X;≤; T;R⟩ where ⟨X;≤; T⟩ is a WH- space [6], and R is an additional binary relation used to interpret the modal operator. We will also study the WH-algebras with successor and the WH-algebras with gamma. For these varieties we will give two topological dualities. The rst one is based on the representation given for the frontal weak Heyting algebras. The second one is based on certain particular classes of WH-spaces.
publishDate 2012
dc.date.none.fl_str_mv 2012
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/114720
url http://sedici.unlp.edu.ar/handle/10915/114720
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1572-8730
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11225-012-9390-2
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
91-114
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616145548607488
score 13.070432