Exact solution for a two-phase Stefan problem with variable latent heat and a convective boundary condition at the fixed face

Autores
Bollati, Julieta; Tarzia, Domingo Alberto
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Recently, in Tarzia (Thermal Sci 21A:1–11, 2017) for the classical two-phase Lamé–Clapeyron–Stefan problem an equivalence between the temperature and convective boundary conditions at the fixed face under a certain restriction was obtained. Motivated by this article we study the two-phase Stefan problem for a semi-infinite material with a latent heat defined as a power function of the position and a convective boundary condition at the fixed face. An exact solution is constructed using Kummer functions in case that an inequality for the convective transfer coefficient is satisfied generalizing recent works for the corresponding one-phase free boundary problem. We also consider the limit to our problem when that coefficient goes to infinity obtaining a new free boundary problem, which has been recently studied in Zhou et al. (J Eng Math 2017. https://doi.org/10.1007/s10665-017-9921-y).
Fil: Bollati, Julieta. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
CONVECTIVE BOUNDARY CONDITION
EXPLICIT SOLUTION
KUMMER FUNCTION
PHASE-CHANGE PROCESSES
SIMILARITY SOLUTION
STEFAN PROBLEM
VARIABLE LATENT HEAT
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/160825

id CONICETDig_d7c4afa18b5624583fed6966b7492722
oai_identifier_str oai:ri.conicet.gov.ar:11336/160825
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Exact solution for a two-phase Stefan problem with variable latent heat and a convective boundary condition at the fixed faceBollati, JulietaTarzia, Domingo AlbertoCONVECTIVE BOUNDARY CONDITIONEXPLICIT SOLUTIONKUMMER FUNCTIONPHASE-CHANGE PROCESSESSIMILARITY SOLUTIONSTEFAN PROBLEMVARIABLE LATENT HEAThttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Recently, in Tarzia (Thermal Sci 21A:1–11, 2017) for the classical two-phase Lamé–Clapeyron–Stefan problem an equivalence between the temperature and convective boundary conditions at the fixed face under a certain restriction was obtained. Motivated by this article we study the two-phase Stefan problem for a semi-infinite material with a latent heat defined as a power function of the position and a convective boundary condition at the fixed face. An exact solution is constructed using Kummer functions in case that an inequality for the convective transfer coefficient is satisfied generalizing recent works for the corresponding one-phase free boundary problem. We also consider the limit to our problem when that coefficient goes to infinity obtaining a new free boundary problem, which has been recently studied in Zhou et al. (J Eng Math 2017. https://doi.org/10.1007/s10665-017-9921-y).Fil: Bollati, Julieta. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaBirkhauser Verlag Ag2018-03-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/160825Bollati, Julieta; Tarzia, Domingo Alberto; Exact solution for a two-phase Stefan problem with variable latent heat and a convective boundary condition at the fixed face; Birkhauser Verlag Ag; Zeitschrift Fur Angewandte Mathematik Und Physik; 69; 2; 2-3-2018; 1-150044-22751420-9039CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s00033-018-0923-zinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00033-018-0923-zinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:02Zoai:ri.conicet.gov.ar:11336/160825instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:02.865CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Exact solution for a two-phase Stefan problem with variable latent heat and a convective boundary condition at the fixed face
title Exact solution for a two-phase Stefan problem with variable latent heat and a convective boundary condition at the fixed face
spellingShingle Exact solution for a two-phase Stefan problem with variable latent heat and a convective boundary condition at the fixed face
Bollati, Julieta
CONVECTIVE BOUNDARY CONDITION
EXPLICIT SOLUTION
KUMMER FUNCTION
PHASE-CHANGE PROCESSES
SIMILARITY SOLUTION
STEFAN PROBLEM
VARIABLE LATENT HEAT
title_short Exact solution for a two-phase Stefan problem with variable latent heat and a convective boundary condition at the fixed face
title_full Exact solution for a two-phase Stefan problem with variable latent heat and a convective boundary condition at the fixed face
title_fullStr Exact solution for a two-phase Stefan problem with variable latent heat and a convective boundary condition at the fixed face
title_full_unstemmed Exact solution for a two-phase Stefan problem with variable latent heat and a convective boundary condition at the fixed face
title_sort Exact solution for a two-phase Stefan problem with variable latent heat and a convective boundary condition at the fixed face
dc.creator.none.fl_str_mv Bollati, Julieta
Tarzia, Domingo Alberto
author Bollati, Julieta
author_facet Bollati, Julieta
Tarzia, Domingo Alberto
author_role author
author2 Tarzia, Domingo Alberto
author2_role author
dc.subject.none.fl_str_mv CONVECTIVE BOUNDARY CONDITION
EXPLICIT SOLUTION
KUMMER FUNCTION
PHASE-CHANGE PROCESSES
SIMILARITY SOLUTION
STEFAN PROBLEM
VARIABLE LATENT HEAT
topic CONVECTIVE BOUNDARY CONDITION
EXPLICIT SOLUTION
KUMMER FUNCTION
PHASE-CHANGE PROCESSES
SIMILARITY SOLUTION
STEFAN PROBLEM
VARIABLE LATENT HEAT
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Recently, in Tarzia (Thermal Sci 21A:1–11, 2017) for the classical two-phase Lamé–Clapeyron–Stefan problem an equivalence between the temperature and convective boundary conditions at the fixed face under a certain restriction was obtained. Motivated by this article we study the two-phase Stefan problem for a semi-infinite material with a latent heat defined as a power function of the position and a convective boundary condition at the fixed face. An exact solution is constructed using Kummer functions in case that an inequality for the convective transfer coefficient is satisfied generalizing recent works for the corresponding one-phase free boundary problem. We also consider the limit to our problem when that coefficient goes to infinity obtaining a new free boundary problem, which has been recently studied in Zhou et al. (J Eng Math 2017. https://doi.org/10.1007/s10665-017-9921-y).
Fil: Bollati, Julieta. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Recently, in Tarzia (Thermal Sci 21A:1–11, 2017) for the classical two-phase Lamé–Clapeyron–Stefan problem an equivalence between the temperature and convective boundary conditions at the fixed face under a certain restriction was obtained. Motivated by this article we study the two-phase Stefan problem for a semi-infinite material with a latent heat defined as a power function of the position and a convective boundary condition at the fixed face. An exact solution is constructed using Kummer functions in case that an inequality for the convective transfer coefficient is satisfied generalizing recent works for the corresponding one-phase free boundary problem. We also consider the limit to our problem when that coefficient goes to infinity obtaining a new free boundary problem, which has been recently studied in Zhou et al. (J Eng Math 2017. https://doi.org/10.1007/s10665-017-9921-y).
publishDate 2018
dc.date.none.fl_str_mv 2018-03-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/160825
Bollati, Julieta; Tarzia, Domingo Alberto; Exact solution for a two-phase Stefan problem with variable latent heat and a convective boundary condition at the fixed face; Birkhauser Verlag Ag; Zeitschrift Fur Angewandte Mathematik Und Physik; 69; 2; 2-3-2018; 1-15
0044-2275
1420-9039
CONICET Digital
CONICET
url http://hdl.handle.net/11336/160825
identifier_str_mv Bollati, Julieta; Tarzia, Domingo Alberto; Exact solution for a two-phase Stefan problem with variable latent heat and a convective boundary condition at the fixed face; Birkhauser Verlag Ag; Zeitschrift Fur Angewandte Mathematik Und Physik; 69; 2; 2-3-2018; 1-15
0044-2275
1420-9039
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s00033-018-0923-z
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00033-018-0923-z
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Birkhauser Verlag Ag
publisher.none.fl_str_mv Birkhauser Verlag Ag
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269197132890112
score 13.13397