Exact solution for a two-phase Stefan problem with variable latent heat and a convective boundary condition at the fixed face
- Autores
- Bollati, Julieta; Tarzia, Domingo Alberto
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Recently, in Tarzia (Thermal Sci 21A:1–11, 2017) for the classical two-phase Lamé–Clapeyron–Stefan problem an equivalence between the temperature and convective boundary conditions at the fixed face under a certain restriction was obtained. Motivated by this article we study the two-phase Stefan problem for a semi-infinite material with a latent heat defined as a power function of the position and a convective boundary condition at the fixed face. An exact solution is constructed using Kummer functions in case that an inequality for the convective transfer coefficient is satisfied generalizing recent works for the corresponding one-phase free boundary problem. We also consider the limit to our problem when that coefficient goes to infinity obtaining a new free boundary problem, which has been recently studied in Zhou et al. (J Eng Math 2017. https://doi.org/10.1007/s10665-017-9921-y).
Fil: Bollati, Julieta. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
CONVECTIVE BOUNDARY CONDITION
EXPLICIT SOLUTION
KUMMER FUNCTION
PHASE-CHANGE PROCESSES
SIMILARITY SOLUTION
STEFAN PROBLEM
VARIABLE LATENT HEAT - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/160825
Ver los metadatos del registro completo
id |
CONICETDig_d7c4afa18b5624583fed6966b7492722 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/160825 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Exact solution for a two-phase Stefan problem with variable latent heat and a convective boundary condition at the fixed faceBollati, JulietaTarzia, Domingo AlbertoCONVECTIVE BOUNDARY CONDITIONEXPLICIT SOLUTIONKUMMER FUNCTIONPHASE-CHANGE PROCESSESSIMILARITY SOLUTIONSTEFAN PROBLEMVARIABLE LATENT HEAThttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Recently, in Tarzia (Thermal Sci 21A:1–11, 2017) for the classical two-phase Lamé–Clapeyron–Stefan problem an equivalence between the temperature and convective boundary conditions at the fixed face under a certain restriction was obtained. Motivated by this article we study the two-phase Stefan problem for a semi-infinite material with a latent heat defined as a power function of the position and a convective boundary condition at the fixed face. An exact solution is constructed using Kummer functions in case that an inequality for the convective transfer coefficient is satisfied generalizing recent works for the corresponding one-phase free boundary problem. We also consider the limit to our problem when that coefficient goes to infinity obtaining a new free boundary problem, which has been recently studied in Zhou et al. (J Eng Math 2017. https://doi.org/10.1007/s10665-017-9921-y).Fil: Bollati, Julieta. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaBirkhauser Verlag Ag2018-03-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/160825Bollati, Julieta; Tarzia, Domingo Alberto; Exact solution for a two-phase Stefan problem with variable latent heat and a convective boundary condition at the fixed face; Birkhauser Verlag Ag; Zeitschrift Fur Angewandte Mathematik Und Physik; 69; 2; 2-3-2018; 1-150044-22751420-9039CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s00033-018-0923-zinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00033-018-0923-zinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:02Zoai:ri.conicet.gov.ar:11336/160825instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:02.865CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Exact solution for a two-phase Stefan problem with variable latent heat and a convective boundary condition at the fixed face |
title |
Exact solution for a two-phase Stefan problem with variable latent heat and a convective boundary condition at the fixed face |
spellingShingle |
Exact solution for a two-phase Stefan problem with variable latent heat and a convective boundary condition at the fixed face Bollati, Julieta CONVECTIVE BOUNDARY CONDITION EXPLICIT SOLUTION KUMMER FUNCTION PHASE-CHANGE PROCESSES SIMILARITY SOLUTION STEFAN PROBLEM VARIABLE LATENT HEAT |
title_short |
Exact solution for a two-phase Stefan problem with variable latent heat and a convective boundary condition at the fixed face |
title_full |
Exact solution for a two-phase Stefan problem with variable latent heat and a convective boundary condition at the fixed face |
title_fullStr |
Exact solution for a two-phase Stefan problem with variable latent heat and a convective boundary condition at the fixed face |
title_full_unstemmed |
Exact solution for a two-phase Stefan problem with variable latent heat and a convective boundary condition at the fixed face |
title_sort |
Exact solution for a two-phase Stefan problem with variable latent heat and a convective boundary condition at the fixed face |
dc.creator.none.fl_str_mv |
Bollati, Julieta Tarzia, Domingo Alberto |
author |
Bollati, Julieta |
author_facet |
Bollati, Julieta Tarzia, Domingo Alberto |
author_role |
author |
author2 |
Tarzia, Domingo Alberto |
author2_role |
author |
dc.subject.none.fl_str_mv |
CONVECTIVE BOUNDARY CONDITION EXPLICIT SOLUTION KUMMER FUNCTION PHASE-CHANGE PROCESSES SIMILARITY SOLUTION STEFAN PROBLEM VARIABLE LATENT HEAT |
topic |
CONVECTIVE BOUNDARY CONDITION EXPLICIT SOLUTION KUMMER FUNCTION PHASE-CHANGE PROCESSES SIMILARITY SOLUTION STEFAN PROBLEM VARIABLE LATENT HEAT |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Recently, in Tarzia (Thermal Sci 21A:1–11, 2017) for the classical two-phase Lamé–Clapeyron–Stefan problem an equivalence between the temperature and convective boundary conditions at the fixed face under a certain restriction was obtained. Motivated by this article we study the two-phase Stefan problem for a semi-infinite material with a latent heat defined as a power function of the position and a convective boundary condition at the fixed face. An exact solution is constructed using Kummer functions in case that an inequality for the convective transfer coefficient is satisfied generalizing recent works for the corresponding one-phase free boundary problem. We also consider the limit to our problem when that coefficient goes to infinity obtaining a new free boundary problem, which has been recently studied in Zhou et al. (J Eng Math 2017. https://doi.org/10.1007/s10665-017-9921-y). Fil: Bollati, Julieta. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Recently, in Tarzia (Thermal Sci 21A:1–11, 2017) for the classical two-phase Lamé–Clapeyron–Stefan problem an equivalence between the temperature and convective boundary conditions at the fixed face under a certain restriction was obtained. Motivated by this article we study the two-phase Stefan problem for a semi-infinite material with a latent heat defined as a power function of the position and a convective boundary condition at the fixed face. An exact solution is constructed using Kummer functions in case that an inequality for the convective transfer coefficient is satisfied generalizing recent works for the corresponding one-phase free boundary problem. We also consider the limit to our problem when that coefficient goes to infinity obtaining a new free boundary problem, which has been recently studied in Zhou et al. (J Eng Math 2017. https://doi.org/10.1007/s10665-017-9921-y). |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-03-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/160825 Bollati, Julieta; Tarzia, Domingo Alberto; Exact solution for a two-phase Stefan problem with variable latent heat and a convective boundary condition at the fixed face; Birkhauser Verlag Ag; Zeitschrift Fur Angewandte Mathematik Und Physik; 69; 2; 2-3-2018; 1-15 0044-2275 1420-9039 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/160825 |
identifier_str_mv |
Bollati, Julieta; Tarzia, Domingo Alberto; Exact solution for a two-phase Stefan problem with variable latent heat and a convective boundary condition at the fixed face; Birkhauser Verlag Ag; Zeitschrift Fur Angewandte Mathematik Und Physik; 69; 2; 2-3-2018; 1-15 0044-2275 1420-9039 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s00033-018-0923-z info:eu-repo/semantics/altIdentifier/doi/10.1007/s00033-018-0923-z |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269197132890112 |
score |
13.13397 |