One-phase stefan problem with a latent heat depending on the position of the free boundary and its rate of change

Autores
Bollati, Julieta; Tarzia, Domingo Alberto
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
From the one-dimensional consolidation of ne-grained soils withthreshold gradient, it can be derived a special type of Stefan problems wherethe seepage front, because of the presence of this threshold gradient, exhibitsthe features of a moving boundary. In this type of problems, in contrast withthe classical Stefan problem, the latent heat is considered to depend inverselyto the rate of change of the seepage front. In this paper, we study a one-phase Stefan problem with a latent heat that depends on the rate of changeof the free boundary and on its position. The aim of this analysis is to extendprior results, nding an analytical solution that recovers, by specifying someparameters, the solutions that have already been examined in the literatureregarding Stefan problems with variable latent heat. Computational examplesare presented to examine the eect of this parameters on the free boundary.
Fil: Bollati, Julieta. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina
Materia
STEFAN PROBLEM
VARIABLE LATENT HEAT
THRESHOLD GRADIENT
ONE-DIMENSIONAL CONSOLIDATION
EXPLICIT SOLUTION
SIMILARITY SOLUTION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/101160

id CONICETDig_d4d517ef3080a134301e4f63a3fe7e6a
oai_identifier_str oai:ri.conicet.gov.ar:11336/101160
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling One-phase stefan problem with a latent heat depending on the position of the free boundary and its rate of changeBollati, JulietaTarzia, Domingo AlbertoSTEFAN PROBLEMVARIABLE LATENT HEATTHRESHOLD GRADIENTONE-DIMENSIONAL CONSOLIDATIONEXPLICIT SOLUTIONSIMILARITY SOLUTIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1From the one-dimensional consolidation of ne-grained soils withthreshold gradient, it can be derived a special type of Stefan problems wherethe seepage front, because of the presence of this threshold gradient, exhibitsthe features of a moving boundary. In this type of problems, in contrast withthe classical Stefan problem, the latent heat is considered to depend inverselyto the rate of change of the seepage front. In this paper, we study a one-phase Stefan problem with a latent heat that depends on the rate of changeof the free boundary and on its position. The aim of this analysis is to extendprior results, nding an analytical solution that recovers, by specifying someparameters, the solutions that have already been examined in the literatureregarding Stefan problems with variable latent heat. Computational examplesare presented to examine the eect of this parameters on the free boundary.Fil: Bollati, Julieta. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaFil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; ArgentinaTexas State University2018-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/101160Bollati, Julieta; Tarzia, Domingo Alberto; One-phase stefan problem with a latent heat depending on the position of the free boundary and its rate of change; Texas State University; Electronic Journal of Differential Equations; 2018; 10; 2-2018; 1-121072-6691CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ejde.math.txstate.edu/info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1703.07845info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:42Zoai:ri.conicet.gov.ar:11336/101160instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:42.805CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv One-phase stefan problem with a latent heat depending on the position of the free boundary and its rate of change
title One-phase stefan problem with a latent heat depending on the position of the free boundary and its rate of change
spellingShingle One-phase stefan problem with a latent heat depending on the position of the free boundary and its rate of change
Bollati, Julieta
STEFAN PROBLEM
VARIABLE LATENT HEAT
THRESHOLD GRADIENT
ONE-DIMENSIONAL CONSOLIDATION
EXPLICIT SOLUTION
SIMILARITY SOLUTION
title_short One-phase stefan problem with a latent heat depending on the position of the free boundary and its rate of change
title_full One-phase stefan problem with a latent heat depending on the position of the free boundary and its rate of change
title_fullStr One-phase stefan problem with a latent heat depending on the position of the free boundary and its rate of change
title_full_unstemmed One-phase stefan problem with a latent heat depending on the position of the free boundary and its rate of change
title_sort One-phase stefan problem with a latent heat depending on the position of the free boundary and its rate of change
dc.creator.none.fl_str_mv Bollati, Julieta
Tarzia, Domingo Alberto
author Bollati, Julieta
author_facet Bollati, Julieta
Tarzia, Domingo Alberto
author_role author
author2 Tarzia, Domingo Alberto
author2_role author
dc.subject.none.fl_str_mv STEFAN PROBLEM
VARIABLE LATENT HEAT
THRESHOLD GRADIENT
ONE-DIMENSIONAL CONSOLIDATION
EXPLICIT SOLUTION
SIMILARITY SOLUTION
topic STEFAN PROBLEM
VARIABLE LATENT HEAT
THRESHOLD GRADIENT
ONE-DIMENSIONAL CONSOLIDATION
EXPLICIT SOLUTION
SIMILARITY SOLUTION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv From the one-dimensional consolidation of ne-grained soils withthreshold gradient, it can be derived a special type of Stefan problems wherethe seepage front, because of the presence of this threshold gradient, exhibitsthe features of a moving boundary. In this type of problems, in contrast withthe classical Stefan problem, the latent heat is considered to depend inverselyto the rate of change of the seepage front. In this paper, we study a one-phase Stefan problem with a latent heat that depends on the rate of changeof the free boundary and on its position. The aim of this analysis is to extendprior results, nding an analytical solution that recovers, by specifying someparameters, the solutions that have already been examined in the literatureregarding Stefan problems with variable latent heat. Computational examplesare presented to examine the eect of this parameters on the free boundary.
Fil: Bollati, Julieta. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina
description From the one-dimensional consolidation of ne-grained soils withthreshold gradient, it can be derived a special type of Stefan problems wherethe seepage front, because of the presence of this threshold gradient, exhibitsthe features of a moving boundary. In this type of problems, in contrast withthe classical Stefan problem, the latent heat is considered to depend inverselyto the rate of change of the seepage front. In this paper, we study a one-phase Stefan problem with a latent heat that depends on the rate of changeof the free boundary and on its position. The aim of this analysis is to extendprior results, nding an analytical solution that recovers, by specifying someparameters, the solutions that have already been examined in the literatureregarding Stefan problems with variable latent heat. Computational examplesare presented to examine the eect of this parameters on the free boundary.
publishDate 2018
dc.date.none.fl_str_mv 2018-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/101160
Bollati, Julieta; Tarzia, Domingo Alberto; One-phase stefan problem with a latent heat depending on the position of the free boundary and its rate of change; Texas State University; Electronic Journal of Differential Equations; 2018; 10; 2-2018; 1-12
1072-6691
CONICET Digital
CONICET
url http://hdl.handle.net/11336/101160
identifier_str_mv Bollati, Julieta; Tarzia, Domingo Alberto; One-phase stefan problem with a latent heat depending on the position of the free boundary and its rate of change; Texas State University; Electronic Journal of Differential Equations; 2018; 10; 2-2018; 1-12
1072-6691
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://ejde.math.txstate.edu/
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1703.07845
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Texas State University
publisher.none.fl_str_mv Texas State University
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269243173765120
score 13.13397