One-phase stefan problem with a latent heat depending on the position of the free boundary and its rate of change
- Autores
- Bollati, Julieta; Tarzia, Domingo Alberto
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- From the one-dimensional consolidation of ne-grained soils withthreshold gradient, it can be derived a special type of Stefan problems wherethe seepage front, because of the presence of this threshold gradient, exhibitsthe features of a moving boundary. In this type of problems, in contrast withthe classical Stefan problem, the latent heat is considered to depend inverselyto the rate of change of the seepage front. In this paper, we study a one-phase Stefan problem with a latent heat that depends on the rate of changeof the free boundary and on its position. The aim of this analysis is to extendprior results, nding an analytical solution that recovers, by specifying someparameters, the solutions that have already been examined in the literatureregarding Stefan problems with variable latent heat. Computational examplesare presented to examine the eect of this parameters on the free boundary.
Fil: Bollati, Julieta. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina - Materia
-
STEFAN PROBLEM
VARIABLE LATENT HEAT
THRESHOLD GRADIENT
ONE-DIMENSIONAL CONSOLIDATION
EXPLICIT SOLUTION
SIMILARITY SOLUTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/101160
Ver los metadatos del registro completo
id |
CONICETDig_d4d517ef3080a134301e4f63a3fe7e6a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/101160 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
One-phase stefan problem with a latent heat depending on the position of the free boundary and its rate of changeBollati, JulietaTarzia, Domingo AlbertoSTEFAN PROBLEMVARIABLE LATENT HEATTHRESHOLD GRADIENTONE-DIMENSIONAL CONSOLIDATIONEXPLICIT SOLUTIONSIMILARITY SOLUTIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1From the one-dimensional consolidation of ne-grained soils withthreshold gradient, it can be derived a special type of Stefan problems wherethe seepage front, because of the presence of this threshold gradient, exhibitsthe features of a moving boundary. In this type of problems, in contrast withthe classical Stefan problem, the latent heat is considered to depend inverselyto the rate of change of the seepage front. In this paper, we study a one-phase Stefan problem with a latent heat that depends on the rate of changeof the free boundary and on its position. The aim of this analysis is to extendprior results, nding an analytical solution that recovers, by specifying someparameters, the solutions that have already been examined in the literatureregarding Stefan problems with variable latent heat. Computational examplesare presented to examine the eect of this parameters on the free boundary.Fil: Bollati, Julieta. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaFil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; ArgentinaTexas State University2018-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/101160Bollati, Julieta; Tarzia, Domingo Alberto; One-phase stefan problem with a latent heat depending on the position of the free boundary and its rate of change; Texas State University; Electronic Journal of Differential Equations; 2018; 10; 2-2018; 1-121072-6691CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ejde.math.txstate.edu/info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1703.07845info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:42Zoai:ri.conicet.gov.ar:11336/101160instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:42.805CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
One-phase stefan problem with a latent heat depending on the position of the free boundary and its rate of change |
title |
One-phase stefan problem with a latent heat depending on the position of the free boundary and its rate of change |
spellingShingle |
One-phase stefan problem with a latent heat depending on the position of the free boundary and its rate of change Bollati, Julieta STEFAN PROBLEM VARIABLE LATENT HEAT THRESHOLD GRADIENT ONE-DIMENSIONAL CONSOLIDATION EXPLICIT SOLUTION SIMILARITY SOLUTION |
title_short |
One-phase stefan problem with a latent heat depending on the position of the free boundary and its rate of change |
title_full |
One-phase stefan problem with a latent heat depending on the position of the free boundary and its rate of change |
title_fullStr |
One-phase stefan problem with a latent heat depending on the position of the free boundary and its rate of change |
title_full_unstemmed |
One-phase stefan problem with a latent heat depending on the position of the free boundary and its rate of change |
title_sort |
One-phase stefan problem with a latent heat depending on the position of the free boundary and its rate of change |
dc.creator.none.fl_str_mv |
Bollati, Julieta Tarzia, Domingo Alberto |
author |
Bollati, Julieta |
author_facet |
Bollati, Julieta Tarzia, Domingo Alberto |
author_role |
author |
author2 |
Tarzia, Domingo Alberto |
author2_role |
author |
dc.subject.none.fl_str_mv |
STEFAN PROBLEM VARIABLE LATENT HEAT THRESHOLD GRADIENT ONE-DIMENSIONAL CONSOLIDATION EXPLICIT SOLUTION SIMILARITY SOLUTION |
topic |
STEFAN PROBLEM VARIABLE LATENT HEAT THRESHOLD GRADIENT ONE-DIMENSIONAL CONSOLIDATION EXPLICIT SOLUTION SIMILARITY SOLUTION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
From the one-dimensional consolidation of ne-grained soils withthreshold gradient, it can be derived a special type of Stefan problems wherethe seepage front, because of the presence of this threshold gradient, exhibitsthe features of a moving boundary. In this type of problems, in contrast withthe classical Stefan problem, the latent heat is considered to depend inverselyto the rate of change of the seepage front. In this paper, we study a one-phase Stefan problem with a latent heat that depends on the rate of changeof the free boundary and on its position. The aim of this analysis is to extendprior results, nding an analytical solution that recovers, by specifying someparameters, the solutions that have already been examined in the literatureregarding Stefan problems with variable latent heat. Computational examplesare presented to examine the eect of this parameters on the free boundary. Fil: Bollati, Julieta. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina |
description |
From the one-dimensional consolidation of ne-grained soils withthreshold gradient, it can be derived a special type of Stefan problems wherethe seepage front, because of the presence of this threshold gradient, exhibitsthe features of a moving boundary. In this type of problems, in contrast withthe classical Stefan problem, the latent heat is considered to depend inverselyto the rate of change of the seepage front. In this paper, we study a one-phase Stefan problem with a latent heat that depends on the rate of changeof the free boundary and on its position. The aim of this analysis is to extendprior results, nding an analytical solution that recovers, by specifying someparameters, the solutions that have already been examined in the literatureregarding Stefan problems with variable latent heat. Computational examplesare presented to examine the eect of this parameters on the free boundary. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/101160 Bollati, Julieta; Tarzia, Domingo Alberto; One-phase stefan problem with a latent heat depending on the position of the free boundary and its rate of change; Texas State University; Electronic Journal of Differential Equations; 2018; 10; 2-2018; 1-12 1072-6691 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/101160 |
identifier_str_mv |
Bollati, Julieta; Tarzia, Domingo Alberto; One-phase stefan problem with a latent heat depending on the position of the free boundary and its rate of change; Texas State University; Electronic Journal of Differential Equations; 2018; 10; 2-2018; 1-12 1072-6691 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ejde.math.txstate.edu/ info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1703.07845 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Texas State University |
publisher.none.fl_str_mv |
Texas State University |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269243173765120 |
score |
13.13397 |