Explicit Solution for the one-phase Stefan problem with latent heat depending on the position and a convective boundary condition at the fixed face

Autores
Bollati, Julieta; Tarzia, Domingo Alberto
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
An explicit solution of a similarity type is obtained for a one-phase Stefan problem in a semi-infinite material using Kummer functions. Itis considered a phase-change problem with a latent heat defined as a powerfunction of the position with a non-negative real exponent and a convectiveboundary condition at the fixed face x = 0. Existence and uniqueness of thesolution is proved. Relationship between this problem and the problems withtemperature and flux boundary condition is also analysed. Furthermore it isstudied the limit behaviour of the solution when the coefficient which char-acterizes the heat transfer at the fixed boundary tends to infinity. Comput-ing this limit allows to demonstrate that the problem proposed in this paperwith a convective boundary condition generalizes the problem with Dirichletboundary condition. Numerical computation of the solution is done over cer-tain examples, with a view to comparing this results with those obtained bygeneral algorithms that solve Stefan problems.
Fil: Bollati, Julieta. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
STEFAN PROBLEM
PHASE-CHANGE PROCESSES
VARIABLE LATENT HEAT
CONVECTIVE BOUNDARY CONDITION
KUMMER FUNCTIONS
SIMILARITY SOLUTION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/99607

id CONICETDig_cdea7c3d1ea289bf40057f201ce4655c
oai_identifier_str oai:ri.conicet.gov.ar:11336/99607
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Explicit Solution for the one-phase Stefan problem with latent heat depending on the position and a convective boundary condition at the fixed faceBollati, JulietaTarzia, Domingo AlbertoSTEFAN PROBLEMPHASE-CHANGE PROCESSESVARIABLE LATENT HEATCONVECTIVE BOUNDARY CONDITIONKUMMER FUNCTIONSSIMILARITY SOLUTIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1An explicit solution of a similarity type is obtained for a one-phase Stefan problem in a semi-infinite material using Kummer functions. Itis considered a phase-change problem with a latent heat defined as a powerfunction of the position with a non-negative real exponent and a convectiveboundary condition at the fixed face x = 0. Existence and uniqueness of thesolution is proved. Relationship between this problem and the problems withtemperature and flux boundary condition is also analysed. Furthermore it isstudied the limit behaviour of the solution when the coefficient which char-acterizes the heat transfer at the fixed boundary tends to infinity. Comput-ing this limit allows to demonstrate that the problem proposed in this paperwith a convective boundary condition generalizes the problem with Dirichletboundary condition. Numerical computation of the solution is done over cer-tain examples, with a view to comparing this results with those obtained bygeneral algorithms that solve Stefan problems.Fil: Bollati, Julieta. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaDynamic Publishers, Inc2018-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/99607Bollati, Julieta; Tarzia, Domingo Alberto; Explicit Solution for the one-phase Stefan problem with latent heat depending on the position and a convective boundary condition at the fixed face; Dynamic Publishers, Inc; Communications In Applied Analysis; 22; 2; 3-2018; 309-3321083-2564CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.12732/caa.v22i2.10info:eu-repo/semantics/altIdentifier/url/https://acadsol.eu/caa/22/2/10info:eu-repo/semantics/altIdentifier/url/https://www.austral.edu.ar/investigadores/wp-content/uploads/2020/03/Bollati-Tarzia-CommApplAnal-22No22018309-332.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:46Zoai:ri.conicet.gov.ar:11336/99607instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:47.194CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Explicit Solution for the one-phase Stefan problem with latent heat depending on the position and a convective boundary condition at the fixed face
title Explicit Solution for the one-phase Stefan problem with latent heat depending on the position and a convective boundary condition at the fixed face
spellingShingle Explicit Solution for the one-phase Stefan problem with latent heat depending on the position and a convective boundary condition at the fixed face
Bollati, Julieta
STEFAN PROBLEM
PHASE-CHANGE PROCESSES
VARIABLE LATENT HEAT
CONVECTIVE BOUNDARY CONDITION
KUMMER FUNCTIONS
SIMILARITY SOLUTION
title_short Explicit Solution for the one-phase Stefan problem with latent heat depending on the position and a convective boundary condition at the fixed face
title_full Explicit Solution for the one-phase Stefan problem with latent heat depending on the position and a convective boundary condition at the fixed face
title_fullStr Explicit Solution for the one-phase Stefan problem with latent heat depending on the position and a convective boundary condition at the fixed face
title_full_unstemmed Explicit Solution for the one-phase Stefan problem with latent heat depending on the position and a convective boundary condition at the fixed face
title_sort Explicit Solution for the one-phase Stefan problem with latent heat depending on the position and a convective boundary condition at the fixed face
dc.creator.none.fl_str_mv Bollati, Julieta
Tarzia, Domingo Alberto
author Bollati, Julieta
author_facet Bollati, Julieta
Tarzia, Domingo Alberto
author_role author
author2 Tarzia, Domingo Alberto
author2_role author
dc.subject.none.fl_str_mv STEFAN PROBLEM
PHASE-CHANGE PROCESSES
VARIABLE LATENT HEAT
CONVECTIVE BOUNDARY CONDITION
KUMMER FUNCTIONS
SIMILARITY SOLUTION
topic STEFAN PROBLEM
PHASE-CHANGE PROCESSES
VARIABLE LATENT HEAT
CONVECTIVE BOUNDARY CONDITION
KUMMER FUNCTIONS
SIMILARITY SOLUTION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv An explicit solution of a similarity type is obtained for a one-phase Stefan problem in a semi-infinite material using Kummer functions. Itis considered a phase-change problem with a latent heat defined as a powerfunction of the position with a non-negative real exponent and a convectiveboundary condition at the fixed face x = 0. Existence and uniqueness of thesolution is proved. Relationship between this problem and the problems withtemperature and flux boundary condition is also analysed. Furthermore it isstudied the limit behaviour of the solution when the coefficient which char-acterizes the heat transfer at the fixed boundary tends to infinity. Comput-ing this limit allows to demonstrate that the problem proposed in this paperwith a convective boundary condition generalizes the problem with Dirichletboundary condition. Numerical computation of the solution is done over cer-tain examples, with a view to comparing this results with those obtained bygeneral algorithms that solve Stefan problems.
Fil: Bollati, Julieta. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description An explicit solution of a similarity type is obtained for a one-phase Stefan problem in a semi-infinite material using Kummer functions. Itis considered a phase-change problem with a latent heat defined as a powerfunction of the position with a non-negative real exponent and a convectiveboundary condition at the fixed face x = 0. Existence and uniqueness of thesolution is proved. Relationship between this problem and the problems withtemperature and flux boundary condition is also analysed. Furthermore it isstudied the limit behaviour of the solution when the coefficient which char-acterizes the heat transfer at the fixed boundary tends to infinity. Comput-ing this limit allows to demonstrate that the problem proposed in this paperwith a convective boundary condition generalizes the problem with Dirichletboundary condition. Numerical computation of the solution is done over cer-tain examples, with a view to comparing this results with those obtained bygeneral algorithms that solve Stefan problems.
publishDate 2018
dc.date.none.fl_str_mv 2018-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/99607
Bollati, Julieta; Tarzia, Domingo Alberto; Explicit Solution for the one-phase Stefan problem with latent heat depending on the position and a convective boundary condition at the fixed face; Dynamic Publishers, Inc; Communications In Applied Analysis; 22; 2; 3-2018; 309-332
1083-2564
CONICET Digital
CONICET
url http://hdl.handle.net/11336/99607
identifier_str_mv Bollati, Julieta; Tarzia, Domingo Alberto; Explicit Solution for the one-phase Stefan problem with latent heat depending on the position and a convective boundary condition at the fixed face; Dynamic Publishers, Inc; Communications In Applied Analysis; 22; 2; 3-2018; 309-332
1083-2564
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.12732/caa.v22i2.10
info:eu-repo/semantics/altIdentifier/url/https://acadsol.eu/caa/22/2/10
info:eu-repo/semantics/altIdentifier/url/https://www.austral.edu.ar/investigadores/wp-content/uploads/2020/03/Bollati-Tarzia-CommApplAnal-22No22018309-332.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Dynamic Publishers, Inc
publisher.none.fl_str_mv Dynamic Publishers, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270093887668224
score 13.13397