Explicit Solution for the one-phase Stefan problem with latent heat depending on the position and a convective boundary condition at the fixed face
- Autores
- Bollati, Julieta; Tarzia, Domingo Alberto
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- An explicit solution of a similarity type is obtained for a one-phase Stefan problem in a semi-infinite material using Kummer functions. Itis considered a phase-change problem with a latent heat defined as a powerfunction of the position with a non-negative real exponent and a convectiveboundary condition at the fixed face x = 0. Existence and uniqueness of thesolution is proved. Relationship between this problem and the problems withtemperature and flux boundary condition is also analysed. Furthermore it isstudied the limit behaviour of the solution when the coefficient which char-acterizes the heat transfer at the fixed boundary tends to infinity. Comput-ing this limit allows to demonstrate that the problem proposed in this paperwith a convective boundary condition generalizes the problem with Dirichletboundary condition. Numerical computation of the solution is done over cer-tain examples, with a view to comparing this results with those obtained bygeneral algorithms that solve Stefan problems.
Fil: Bollati, Julieta. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
STEFAN PROBLEM
PHASE-CHANGE PROCESSES
VARIABLE LATENT HEAT
CONVECTIVE BOUNDARY CONDITION
KUMMER FUNCTIONS
SIMILARITY SOLUTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/99607
Ver los metadatos del registro completo
id |
CONICETDig_cdea7c3d1ea289bf40057f201ce4655c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/99607 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Explicit Solution for the one-phase Stefan problem with latent heat depending on the position and a convective boundary condition at the fixed faceBollati, JulietaTarzia, Domingo AlbertoSTEFAN PROBLEMPHASE-CHANGE PROCESSESVARIABLE LATENT HEATCONVECTIVE BOUNDARY CONDITIONKUMMER FUNCTIONSSIMILARITY SOLUTIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1An explicit solution of a similarity type is obtained for a one-phase Stefan problem in a semi-infinite material using Kummer functions. Itis considered a phase-change problem with a latent heat defined as a powerfunction of the position with a non-negative real exponent and a convectiveboundary condition at the fixed face x = 0. Existence and uniqueness of thesolution is proved. Relationship between this problem and the problems withtemperature and flux boundary condition is also analysed. Furthermore it isstudied the limit behaviour of the solution when the coefficient which char-acterizes the heat transfer at the fixed boundary tends to infinity. Comput-ing this limit allows to demonstrate that the problem proposed in this paperwith a convective boundary condition generalizes the problem with Dirichletboundary condition. Numerical computation of the solution is done over cer-tain examples, with a view to comparing this results with those obtained bygeneral algorithms that solve Stefan problems.Fil: Bollati, Julieta. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaDynamic Publishers, Inc2018-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/99607Bollati, Julieta; Tarzia, Domingo Alberto; Explicit Solution for the one-phase Stefan problem with latent heat depending on the position and a convective boundary condition at the fixed face; Dynamic Publishers, Inc; Communications In Applied Analysis; 22; 2; 3-2018; 309-3321083-2564CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.12732/caa.v22i2.10info:eu-repo/semantics/altIdentifier/url/https://acadsol.eu/caa/22/2/10info:eu-repo/semantics/altIdentifier/url/https://www.austral.edu.ar/investigadores/wp-content/uploads/2020/03/Bollati-Tarzia-CommApplAnal-22No22018309-332.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:46Zoai:ri.conicet.gov.ar:11336/99607instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:47.194CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Explicit Solution for the one-phase Stefan problem with latent heat depending on the position and a convective boundary condition at the fixed face |
title |
Explicit Solution for the one-phase Stefan problem with latent heat depending on the position and a convective boundary condition at the fixed face |
spellingShingle |
Explicit Solution for the one-phase Stefan problem with latent heat depending on the position and a convective boundary condition at the fixed face Bollati, Julieta STEFAN PROBLEM PHASE-CHANGE PROCESSES VARIABLE LATENT HEAT CONVECTIVE BOUNDARY CONDITION KUMMER FUNCTIONS SIMILARITY SOLUTION |
title_short |
Explicit Solution for the one-phase Stefan problem with latent heat depending on the position and a convective boundary condition at the fixed face |
title_full |
Explicit Solution for the one-phase Stefan problem with latent heat depending on the position and a convective boundary condition at the fixed face |
title_fullStr |
Explicit Solution for the one-phase Stefan problem with latent heat depending on the position and a convective boundary condition at the fixed face |
title_full_unstemmed |
Explicit Solution for the one-phase Stefan problem with latent heat depending on the position and a convective boundary condition at the fixed face |
title_sort |
Explicit Solution for the one-phase Stefan problem with latent heat depending on the position and a convective boundary condition at the fixed face |
dc.creator.none.fl_str_mv |
Bollati, Julieta Tarzia, Domingo Alberto |
author |
Bollati, Julieta |
author_facet |
Bollati, Julieta Tarzia, Domingo Alberto |
author_role |
author |
author2 |
Tarzia, Domingo Alberto |
author2_role |
author |
dc.subject.none.fl_str_mv |
STEFAN PROBLEM PHASE-CHANGE PROCESSES VARIABLE LATENT HEAT CONVECTIVE BOUNDARY CONDITION KUMMER FUNCTIONS SIMILARITY SOLUTION |
topic |
STEFAN PROBLEM PHASE-CHANGE PROCESSES VARIABLE LATENT HEAT CONVECTIVE BOUNDARY CONDITION KUMMER FUNCTIONS SIMILARITY SOLUTION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
An explicit solution of a similarity type is obtained for a one-phase Stefan problem in a semi-infinite material using Kummer functions. Itis considered a phase-change problem with a latent heat defined as a powerfunction of the position with a non-negative real exponent and a convectiveboundary condition at the fixed face x = 0. Existence and uniqueness of thesolution is proved. Relationship between this problem and the problems withtemperature and flux boundary condition is also analysed. Furthermore it isstudied the limit behaviour of the solution when the coefficient which char-acterizes the heat transfer at the fixed boundary tends to infinity. Comput-ing this limit allows to demonstrate that the problem proposed in this paperwith a convective boundary condition generalizes the problem with Dirichletboundary condition. Numerical computation of the solution is done over cer-tain examples, with a view to comparing this results with those obtained bygeneral algorithms that solve Stefan problems. Fil: Bollati, Julieta. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Tarzia, Domingo Alberto. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
An explicit solution of a similarity type is obtained for a one-phase Stefan problem in a semi-infinite material using Kummer functions. Itis considered a phase-change problem with a latent heat defined as a powerfunction of the position with a non-negative real exponent and a convectiveboundary condition at the fixed face x = 0. Existence and uniqueness of thesolution is proved. Relationship between this problem and the problems withtemperature and flux boundary condition is also analysed. Furthermore it isstudied the limit behaviour of the solution when the coefficient which char-acterizes the heat transfer at the fixed boundary tends to infinity. Comput-ing this limit allows to demonstrate that the problem proposed in this paperwith a convective boundary condition generalizes the problem with Dirichletboundary condition. Numerical computation of the solution is done over cer-tain examples, with a view to comparing this results with those obtained bygeneral algorithms that solve Stefan problems. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/99607 Bollati, Julieta; Tarzia, Domingo Alberto; Explicit Solution for the one-phase Stefan problem with latent heat depending on the position and a convective boundary condition at the fixed face; Dynamic Publishers, Inc; Communications In Applied Analysis; 22; 2; 3-2018; 309-332 1083-2564 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/99607 |
identifier_str_mv |
Bollati, Julieta; Tarzia, Domingo Alberto; Explicit Solution for the one-phase Stefan problem with latent heat depending on the position and a convective boundary condition at the fixed face; Dynamic Publishers, Inc; Communications In Applied Analysis; 22; 2; 3-2018; 309-332 1083-2564 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.12732/caa.v22i2.10 info:eu-repo/semantics/altIdentifier/url/https://acadsol.eu/caa/22/2/10 info:eu-repo/semantics/altIdentifier/url/https://www.austral.edu.ar/investigadores/wp-content/uploads/2020/03/Bollati-Tarzia-CommApplAnal-22No22018309-332.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Dynamic Publishers, Inc |
publisher.none.fl_str_mv |
Dynamic Publishers, Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270093887668224 |
score |
13.13397 |