Bipolar varieties and real solving of a singular polynomial equation
- Autores
- Bank, Bernd; Giusti, Marc; Heintz, Joos Ulrich; Pardo, Luis Miguel
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We introduce the concept of a bipolar variety of a real algebraic hypersurface. This notion is then used for the design and complexity estimations of a novel type of algorithms that finds algebraic sample points for the connected components of a singular real hypersurface. The complexity of these algorithms is polynomial in the maximal geometric degree of the bipolar varieties of the given hypersurface and in this sense intrinsic.
Fil: Bank, Bernd. Universität zu Berlin; Alemania
Fil: Giusti, Marc. Centre National de la Recherche Scientifique; Francia
Fil: Heintz, Joos Ulrich. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Pardo, Luis Miguel. Universidad de Cantabria; España - Materia
-
Real Polynomial Equation Solving
Singular Hypersurface
Polar Variety - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/16377
Ver los metadatos del registro completo
id |
CONICETDig_d6333694c07e08658065303e4c728905 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/16377 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Bipolar varieties and real solving of a singular polynomial equationBank, BerndGiusti, MarcHeintz, Joos UlrichPardo, Luis MiguelReal Polynomial Equation SolvingSingular HypersurfacePolar Varietyhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1We introduce the concept of a bipolar variety of a real algebraic hypersurface. This notion is then used for the design and complexity estimations of a novel type of algorithms that finds algebraic sample points for the connected components of a singular real hypersurface. The complexity of these algorithms is polynomial in the maximal geometric degree of the bipolar varieties of the given hypersurface and in this sense intrinsic.Fil: Bank, Bernd. Universität zu Berlin; AlemaniaFil: Giusti, Marc. Centre National de la Recherche Scientifique; FranciaFil: Heintz, Joos Ulrich. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pardo, Luis Miguel. Universidad de Cantabria; EspañaUniversidad de Jaén2010-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/16377Bank, Bernd; Giusti, Marc; Heintz, Joos Ulrich; Pardo, Luis Miguel; Bipolar varieties and real solving of a singular polynomial equation; Universidad de Jaén; Jaen Journal of Approximation; 2; 1; 3-2010; 79-911889-30661989-7251enginfo:eu-repo/semantics/altIdentifier/url/http://www.ujaen.es/revista/jja/volumes-papers-0002-01.phpinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:45:33Zoai:ri.conicet.gov.ar:11336/16377instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:45:33.459CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Bipolar varieties and real solving of a singular polynomial equation |
title |
Bipolar varieties and real solving of a singular polynomial equation |
spellingShingle |
Bipolar varieties and real solving of a singular polynomial equation Bank, Bernd Real Polynomial Equation Solving Singular Hypersurface Polar Variety |
title_short |
Bipolar varieties and real solving of a singular polynomial equation |
title_full |
Bipolar varieties and real solving of a singular polynomial equation |
title_fullStr |
Bipolar varieties and real solving of a singular polynomial equation |
title_full_unstemmed |
Bipolar varieties and real solving of a singular polynomial equation |
title_sort |
Bipolar varieties and real solving of a singular polynomial equation |
dc.creator.none.fl_str_mv |
Bank, Bernd Giusti, Marc Heintz, Joos Ulrich Pardo, Luis Miguel |
author |
Bank, Bernd |
author_facet |
Bank, Bernd Giusti, Marc Heintz, Joos Ulrich Pardo, Luis Miguel |
author_role |
author |
author2 |
Giusti, Marc Heintz, Joos Ulrich Pardo, Luis Miguel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Real Polynomial Equation Solving Singular Hypersurface Polar Variety |
topic |
Real Polynomial Equation Solving Singular Hypersurface Polar Variety |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We introduce the concept of a bipolar variety of a real algebraic hypersurface. This notion is then used for the design and complexity estimations of a novel type of algorithms that finds algebraic sample points for the connected components of a singular real hypersurface. The complexity of these algorithms is polynomial in the maximal geometric degree of the bipolar varieties of the given hypersurface and in this sense intrinsic. Fil: Bank, Bernd. Universität zu Berlin; Alemania Fil: Giusti, Marc. Centre National de la Recherche Scientifique; Francia Fil: Heintz, Joos Ulrich. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Pardo, Luis Miguel. Universidad de Cantabria; España |
description |
We introduce the concept of a bipolar variety of a real algebraic hypersurface. This notion is then used for the design and complexity estimations of a novel type of algorithms that finds algebraic sample points for the connected components of a singular real hypersurface. The complexity of these algorithms is polynomial in the maximal geometric degree of the bipolar varieties of the given hypersurface and in this sense intrinsic. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/16377 Bank, Bernd; Giusti, Marc; Heintz, Joos Ulrich; Pardo, Luis Miguel; Bipolar varieties and real solving of a singular polynomial equation; Universidad de Jaén; Jaen Journal of Approximation; 2; 1; 3-2010; 79-91 1889-3066 1989-7251 |
url |
http://hdl.handle.net/11336/16377 |
identifier_str_mv |
Bank, Bernd; Giusti, Marc; Heintz, Joos Ulrich; Pardo, Luis Miguel; Bipolar varieties and real solving of a singular polynomial equation; Universidad de Jaén; Jaen Journal of Approximation; 2; 1; 3-2010; 79-91 1889-3066 1989-7251 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.ujaen.es/revista/jja/volumes-papers-0002-01.php |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de Jaén |
publisher.none.fl_str_mv |
Universidad de Jaén |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268738973335552 |
score |
13.13397 |