Point searching in real singular complete intersection varieties: Algorithms of intrinsic complexity

Autores
Bank, Bernd; Giusti, Marc; Heintz, Joos Ulrich
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Abstract. Let X1, . . .,Xn be indeterminates over Q and let X := (X1, . . . ,Xn). Let F1, . . . ,Fp be a regular sequence of polynomials in Q[X] of degreeat most d such that for each 1 ≤ k ≤ p the ideal (F1, . . . , Fk) is radical.Suppose that the variables X1, . . .,Xn are in generic position with respect toF1, . . . ,Fp. Further, suppose that the polynomials are given by an essentiallydivision-free circuit β in Q[X] of size L and non-scalar depth .We present a family of algorithms Πi and invariants δi of F1, . . . ,Fp, 1 ≤i ≤ n − p, such that Πi produces on input β a smooth algebraic sample pointfor each connected component of {x ∈ Rn | F1(x) = ・ ・ ・ = Fp(x) = 0} wherethe Jacobian of F1 = 0, . . . , Fp = 0 has generically rank p.The sequential complexity of Πi is of order L(nd)O(1)(min{(nd)cn, δi})2and its non-scalar parallel complexity is of order O(n( + lognd) log δi). Herec > 0 is a suitable universal constant. Thus, the complexity of Πi meetsthe already known worst case bounds. The particular feature of Πi is itspseudo-polynomial and intrinsic complexity character and this entails the bestruntime behavior one can hope for. The algorithm Πi works in the non-uniformdeterministic as well as in the uniform probabilistic complexity model. Wealso exhibit a worst case estimate of order (nn d)O(n) for the invariant δi. Thereader may notice that this bound overestimates the extrinsic complexity ofΠi, which is bounded by (nd)O(n).1.
Fil: Bank, Bernd. Universität zu Berlin; Alemania
Fil: Giusti, Marc. École Polytechnique; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Heintz, Joos Ulrich. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Universidad de Cantabria. Facultad de Ciencias. Departamento de Matemáticas, Estadística y Computación; España
Materia
REAL POLYNOMIAL EQUATION SOLVING
INTRINSIC COMPLEXITY
SINGULARITIES
POLAR,COPOPLAR AND BIPOLAR VARIETIES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/84684

id CONICETDig_9bafcdcf5ee4e8359bf9a322bbe0647e
oai_identifier_str oai:ri.conicet.gov.ar:11336/84684
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Point searching in real singular complete intersection varieties: Algorithms of intrinsic complexityBank, BerndGiusti, MarcHeintz, Joos UlrichREAL POLYNOMIAL EQUATION SOLVINGINTRINSIC COMPLEXITYSINGULARITIESPOLAR,COPOPLAR AND BIPOLAR VARIETIEShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Abstract. Let X1, . . .,Xn be indeterminates over Q and let X := (X1, . . . ,Xn). Let F1, . . . ,Fp be a regular sequence of polynomials in Q[X] of degreeat most d such that for each 1 ≤ k ≤ p the ideal (F1, . . . , Fk) is radical.Suppose that the variables X1, . . .,Xn are in generic position with respect toF1, . . . ,Fp. Further, suppose that the polynomials are given by an essentiallydivision-free circuit β in Q[X] of size L and non-scalar depth .We present a family of algorithms Πi and invariants δi of F1, . . . ,Fp, 1 ≤i ≤ n − p, such that Πi produces on input β a smooth algebraic sample pointfor each connected component of {x ∈ Rn | F1(x) = ・ ・ ・ = Fp(x) = 0} wherethe Jacobian of F1 = 0, . . . , Fp = 0 has generically rank p.The sequential complexity of Πi is of order L(nd)O(1)(min{(nd)cn, δi})2and its non-scalar parallel complexity is of order O(n( + lognd) log δi). Herec > 0 is a suitable universal constant. Thus, the complexity of Πi meetsthe already known worst case bounds. The particular feature of Πi is itspseudo-polynomial and intrinsic complexity character and this entails the bestruntime behavior one can hope for. The algorithm Πi works in the non-uniformdeterministic as well as in the uniform probabilistic complexity model. Wealso exhibit a worst case estimate of order (nn d)O(n) for the invariant δi. Thereader may notice that this bound overestimates the extrinsic complexity ofΠi, which is bounded by (nd)O(n).1.Fil: Bank, Bernd. Universität zu Berlin; AlemaniaFil: Giusti, Marc. École Polytechnique; Francia. Centre National de la Recherche Scientifique; FranciaFil: Heintz, Joos Ulrich. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Universidad de Cantabria. Facultad de Ciencias. Departamento de Matemáticas, Estadística y Computación; EspañaAmerican Mathematical Society2014-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84684Bank, Bernd; Giusti, Marc; Heintz, Joos Ulrich; Point searching in real singular complete intersection varieties: Algorithms of intrinsic complexity; American Mathematical Society; Mathematics of Computation; 83; 286; 3-2014; 873-8970025-57181088-6842CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/mcom/2014-83-286/S0025-5718-2013-02766-4/info:eu-repo/semantics/altIdentifier/doi/10.1090/S0025-5718-2013-02766-4info:eu-repo/semantics/altIdentifier/url/https://www.semanticscholar.org/paper/Point-searching-in-real-singularcomplete-varieties%3A-Bank-Giusti/d210e6eaea64b54986673b1fdb4d22318ad7080einfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:07:24Zoai:ri.conicet.gov.ar:11336/84684instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:07:24.869CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Point searching in real singular complete intersection varieties: Algorithms of intrinsic complexity
title Point searching in real singular complete intersection varieties: Algorithms of intrinsic complexity
spellingShingle Point searching in real singular complete intersection varieties: Algorithms of intrinsic complexity
Bank, Bernd
REAL POLYNOMIAL EQUATION SOLVING
INTRINSIC COMPLEXITY
SINGULARITIES
POLAR,COPOPLAR AND BIPOLAR VARIETIES
title_short Point searching in real singular complete intersection varieties: Algorithms of intrinsic complexity
title_full Point searching in real singular complete intersection varieties: Algorithms of intrinsic complexity
title_fullStr Point searching in real singular complete intersection varieties: Algorithms of intrinsic complexity
title_full_unstemmed Point searching in real singular complete intersection varieties: Algorithms of intrinsic complexity
title_sort Point searching in real singular complete intersection varieties: Algorithms of intrinsic complexity
dc.creator.none.fl_str_mv Bank, Bernd
Giusti, Marc
Heintz, Joos Ulrich
author Bank, Bernd
author_facet Bank, Bernd
Giusti, Marc
Heintz, Joos Ulrich
author_role author
author2 Giusti, Marc
Heintz, Joos Ulrich
author2_role author
author
dc.subject.none.fl_str_mv REAL POLYNOMIAL EQUATION SOLVING
INTRINSIC COMPLEXITY
SINGULARITIES
POLAR,COPOPLAR AND BIPOLAR VARIETIES
topic REAL POLYNOMIAL EQUATION SOLVING
INTRINSIC COMPLEXITY
SINGULARITIES
POLAR,COPOPLAR AND BIPOLAR VARIETIES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Abstract. Let X1, . . .,Xn be indeterminates over Q and let X := (X1, . . . ,Xn). Let F1, . . . ,Fp be a regular sequence of polynomials in Q[X] of degreeat most d such that for each 1 ≤ k ≤ p the ideal (F1, . . . , Fk) is radical.Suppose that the variables X1, . . .,Xn are in generic position with respect toF1, . . . ,Fp. Further, suppose that the polynomials are given by an essentiallydivision-free circuit β in Q[X] of size L and non-scalar depth .We present a family of algorithms Πi and invariants δi of F1, . . . ,Fp, 1 ≤i ≤ n − p, such that Πi produces on input β a smooth algebraic sample pointfor each connected component of {x ∈ Rn | F1(x) = ・ ・ ・ = Fp(x) = 0} wherethe Jacobian of F1 = 0, . . . , Fp = 0 has generically rank p.The sequential complexity of Πi is of order L(nd)O(1)(min{(nd)cn, δi})2and its non-scalar parallel complexity is of order O(n( + lognd) log δi). Herec > 0 is a suitable universal constant. Thus, the complexity of Πi meetsthe already known worst case bounds. The particular feature of Πi is itspseudo-polynomial and intrinsic complexity character and this entails the bestruntime behavior one can hope for. The algorithm Πi works in the non-uniformdeterministic as well as in the uniform probabilistic complexity model. Wealso exhibit a worst case estimate of order (nn d)O(n) for the invariant δi. Thereader may notice that this bound overestimates the extrinsic complexity ofΠi, which is bounded by (nd)O(n).1.
Fil: Bank, Bernd. Universität zu Berlin; Alemania
Fil: Giusti, Marc. École Polytechnique; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Heintz, Joos Ulrich. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Universidad de Cantabria. Facultad de Ciencias. Departamento de Matemáticas, Estadística y Computación; España
description Abstract. Let X1, . . .,Xn be indeterminates over Q and let X := (X1, . . . ,Xn). Let F1, . . . ,Fp be a regular sequence of polynomials in Q[X] of degreeat most d such that for each 1 ≤ k ≤ p the ideal (F1, . . . , Fk) is radical.Suppose that the variables X1, . . .,Xn are in generic position with respect toF1, . . . ,Fp. Further, suppose that the polynomials are given by an essentiallydivision-free circuit β in Q[X] of size L and non-scalar depth .We present a family of algorithms Πi and invariants δi of F1, . . . ,Fp, 1 ≤i ≤ n − p, such that Πi produces on input β a smooth algebraic sample pointfor each connected component of {x ∈ Rn | F1(x) = ・ ・ ・ = Fp(x) = 0} wherethe Jacobian of F1 = 0, . . . , Fp = 0 has generically rank p.The sequential complexity of Πi is of order L(nd)O(1)(min{(nd)cn, δi})2and its non-scalar parallel complexity is of order O(n( + lognd) log δi). Herec > 0 is a suitable universal constant. Thus, the complexity of Πi meetsthe already known worst case bounds. The particular feature of Πi is itspseudo-polynomial and intrinsic complexity character and this entails the bestruntime behavior one can hope for. The algorithm Πi works in the non-uniformdeterministic as well as in the uniform probabilistic complexity model. Wealso exhibit a worst case estimate of order (nn d)O(n) for the invariant δi. Thereader may notice that this bound overestimates the extrinsic complexity ofΠi, which is bounded by (nd)O(n).1.
publishDate 2014
dc.date.none.fl_str_mv 2014-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/84684
Bank, Bernd; Giusti, Marc; Heintz, Joos Ulrich; Point searching in real singular complete intersection varieties: Algorithms of intrinsic complexity; American Mathematical Society; Mathematics of Computation; 83; 286; 3-2014; 873-897
0025-5718
1088-6842
CONICET Digital
CONICET
url http://hdl.handle.net/11336/84684
identifier_str_mv Bank, Bernd; Giusti, Marc; Heintz, Joos Ulrich; Point searching in real singular complete intersection varieties: Algorithms of intrinsic complexity; American Mathematical Society; Mathematics of Computation; 83; 286; 3-2014; 873-897
0025-5718
1088-6842
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/mcom/2014-83-286/S0025-5718-2013-02766-4/
info:eu-repo/semantics/altIdentifier/doi/10.1090/S0025-5718-2013-02766-4
info:eu-repo/semantics/altIdentifier/url/https://www.semanticscholar.org/paper/Point-searching-in-real-singularcomplete-varieties%3A-Bank-Giusti/d210e6eaea64b54986673b1fdb4d22318ad7080e
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Mathematical Society
publisher.none.fl_str_mv American Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270002898534400
score 13.13397