Point searching in real singular complete intersection varieties: Algorithms of intrinsic complexity
- Autores
- Bank, Bernd; Giusti, Marc; Heintz, Joos Ulrich
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Abstract. Let X1, . . .,Xn be indeterminates over Q and let X := (X1, . . . ,Xn). Let F1, . . . ,Fp be a regular sequence of polynomials in Q[X] of degreeat most d such that for each 1 ≤ k ≤ p the ideal (F1, . . . , Fk) is radical.Suppose that the variables X1, . . .,Xn are in generic position with respect toF1, . . . ,Fp. Further, suppose that the polynomials are given by an essentiallydivision-free circuit β in Q[X] of size L and non-scalar depth .We present a family of algorithms Πi and invariants δi of F1, . . . ,Fp, 1 ≤i ≤ n − p, such that Πi produces on input β a smooth algebraic sample pointfor each connected component of {x ∈ Rn | F1(x) = ・ ・ ・ = Fp(x) = 0} wherethe Jacobian of F1 = 0, . . . , Fp = 0 has generically rank p.The sequential complexity of Πi is of order L(nd)O(1)(min{(nd)cn, δi})2and its non-scalar parallel complexity is of order O(n( + lognd) log δi). Herec > 0 is a suitable universal constant. Thus, the complexity of Πi meetsthe already known worst case bounds. The particular feature of Πi is itspseudo-polynomial and intrinsic complexity character and this entails the bestruntime behavior one can hope for. The algorithm Πi works in the non-uniformdeterministic as well as in the uniform probabilistic complexity model. Wealso exhibit a worst case estimate of order (nn d)O(n) for the invariant δi. Thereader may notice that this bound overestimates the extrinsic complexity ofΠi, which is bounded by (nd)O(n).1.
Fil: Bank, Bernd. Universität zu Berlin; Alemania
Fil: Giusti, Marc. École Polytechnique; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Heintz, Joos Ulrich. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Universidad de Cantabria. Facultad de Ciencias. Departamento de Matemáticas, Estadística y Computación; España - Materia
-
REAL POLYNOMIAL EQUATION SOLVING
INTRINSIC COMPLEXITY
SINGULARITIES
POLAR,COPOPLAR AND BIPOLAR VARIETIES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/84684
Ver los metadatos del registro completo
id |
CONICETDig_9bafcdcf5ee4e8359bf9a322bbe0647e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/84684 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Point searching in real singular complete intersection varieties: Algorithms of intrinsic complexityBank, BerndGiusti, MarcHeintz, Joos UlrichREAL POLYNOMIAL EQUATION SOLVINGINTRINSIC COMPLEXITYSINGULARITIESPOLAR,COPOPLAR AND BIPOLAR VARIETIEShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Abstract. Let X1, . . .,Xn be indeterminates over Q and let X := (X1, . . . ,Xn). Let F1, . . . ,Fp be a regular sequence of polynomials in Q[X] of degreeat most d such that for each 1 ≤ k ≤ p the ideal (F1, . . . , Fk) is radical.Suppose that the variables X1, . . .,Xn are in generic position with respect toF1, . . . ,Fp. Further, suppose that the polynomials are given by an essentiallydivision-free circuit β in Q[X] of size L and non-scalar depth .We present a family of algorithms Πi and invariants δi of F1, . . . ,Fp, 1 ≤i ≤ n − p, such that Πi produces on input β a smooth algebraic sample pointfor each connected component of {x ∈ Rn | F1(x) = ・ ・ ・ = Fp(x) = 0} wherethe Jacobian of F1 = 0, . . . , Fp = 0 has generically rank p.The sequential complexity of Πi is of order L(nd)O(1)(min{(nd)cn, δi})2and its non-scalar parallel complexity is of order O(n( + lognd) log δi). Herec > 0 is a suitable universal constant. Thus, the complexity of Πi meetsthe already known worst case bounds. The particular feature of Πi is itspseudo-polynomial and intrinsic complexity character and this entails the bestruntime behavior one can hope for. The algorithm Πi works in the non-uniformdeterministic as well as in the uniform probabilistic complexity model. Wealso exhibit a worst case estimate of order (nn d)O(n) for the invariant δi. Thereader may notice that this bound overestimates the extrinsic complexity ofΠi, which is bounded by (nd)O(n).1.Fil: Bank, Bernd. Universität zu Berlin; AlemaniaFil: Giusti, Marc. École Polytechnique; Francia. Centre National de la Recherche Scientifique; FranciaFil: Heintz, Joos Ulrich. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Universidad de Cantabria. Facultad de Ciencias. Departamento de Matemáticas, Estadística y Computación; EspañaAmerican Mathematical Society2014-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/84684Bank, Bernd; Giusti, Marc; Heintz, Joos Ulrich; Point searching in real singular complete intersection varieties: Algorithms of intrinsic complexity; American Mathematical Society; Mathematics of Computation; 83; 286; 3-2014; 873-8970025-57181088-6842CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/mcom/2014-83-286/S0025-5718-2013-02766-4/info:eu-repo/semantics/altIdentifier/doi/10.1090/S0025-5718-2013-02766-4info:eu-repo/semantics/altIdentifier/url/https://www.semanticscholar.org/paper/Point-searching-in-real-singularcomplete-varieties%3A-Bank-Giusti/d210e6eaea64b54986673b1fdb4d22318ad7080einfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:07:24Zoai:ri.conicet.gov.ar:11336/84684instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:07:24.869CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Point searching in real singular complete intersection varieties: Algorithms of intrinsic complexity |
title |
Point searching in real singular complete intersection varieties: Algorithms of intrinsic complexity |
spellingShingle |
Point searching in real singular complete intersection varieties: Algorithms of intrinsic complexity Bank, Bernd REAL POLYNOMIAL EQUATION SOLVING INTRINSIC COMPLEXITY SINGULARITIES POLAR,COPOPLAR AND BIPOLAR VARIETIES |
title_short |
Point searching in real singular complete intersection varieties: Algorithms of intrinsic complexity |
title_full |
Point searching in real singular complete intersection varieties: Algorithms of intrinsic complexity |
title_fullStr |
Point searching in real singular complete intersection varieties: Algorithms of intrinsic complexity |
title_full_unstemmed |
Point searching in real singular complete intersection varieties: Algorithms of intrinsic complexity |
title_sort |
Point searching in real singular complete intersection varieties: Algorithms of intrinsic complexity |
dc.creator.none.fl_str_mv |
Bank, Bernd Giusti, Marc Heintz, Joos Ulrich |
author |
Bank, Bernd |
author_facet |
Bank, Bernd Giusti, Marc Heintz, Joos Ulrich |
author_role |
author |
author2 |
Giusti, Marc Heintz, Joos Ulrich |
author2_role |
author author |
dc.subject.none.fl_str_mv |
REAL POLYNOMIAL EQUATION SOLVING INTRINSIC COMPLEXITY SINGULARITIES POLAR,COPOPLAR AND BIPOLAR VARIETIES |
topic |
REAL POLYNOMIAL EQUATION SOLVING INTRINSIC COMPLEXITY SINGULARITIES POLAR,COPOPLAR AND BIPOLAR VARIETIES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Abstract. Let X1, . . .,Xn be indeterminates over Q and let X := (X1, . . . ,Xn). Let F1, . . . ,Fp be a regular sequence of polynomials in Q[X] of degreeat most d such that for each 1 ≤ k ≤ p the ideal (F1, . . . , Fk) is radical.Suppose that the variables X1, . . .,Xn are in generic position with respect toF1, . . . ,Fp. Further, suppose that the polynomials are given by an essentiallydivision-free circuit β in Q[X] of size L and non-scalar depth .We present a family of algorithms Πi and invariants δi of F1, . . . ,Fp, 1 ≤i ≤ n − p, such that Πi produces on input β a smooth algebraic sample pointfor each connected component of {x ∈ Rn | F1(x) = ・ ・ ・ = Fp(x) = 0} wherethe Jacobian of F1 = 0, . . . , Fp = 0 has generically rank p.The sequential complexity of Πi is of order L(nd)O(1)(min{(nd)cn, δi})2and its non-scalar parallel complexity is of order O(n( + lognd) log δi). Herec > 0 is a suitable universal constant. Thus, the complexity of Πi meetsthe already known worst case bounds. The particular feature of Πi is itspseudo-polynomial and intrinsic complexity character and this entails the bestruntime behavior one can hope for. The algorithm Πi works in the non-uniformdeterministic as well as in the uniform probabilistic complexity model. Wealso exhibit a worst case estimate of order (nn d)O(n) for the invariant δi. Thereader may notice that this bound overestimates the extrinsic complexity ofΠi, which is bounded by (nd)O(n).1. Fil: Bank, Bernd. Universität zu Berlin; Alemania Fil: Giusti, Marc. École Polytechnique; Francia. Centre National de la Recherche Scientifique; Francia Fil: Heintz, Joos Ulrich. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Universidad de Cantabria. Facultad de Ciencias. Departamento de Matemáticas, Estadística y Computación; España |
description |
Abstract. Let X1, . . .,Xn be indeterminates over Q and let X := (X1, . . . ,Xn). Let F1, . . . ,Fp be a regular sequence of polynomials in Q[X] of degreeat most d such that for each 1 ≤ k ≤ p the ideal (F1, . . . , Fk) is radical.Suppose that the variables X1, . . .,Xn are in generic position with respect toF1, . . . ,Fp. Further, suppose that the polynomials are given by an essentiallydivision-free circuit β in Q[X] of size L and non-scalar depth .We present a family of algorithms Πi and invariants δi of F1, . . . ,Fp, 1 ≤i ≤ n − p, such that Πi produces on input β a smooth algebraic sample pointfor each connected component of {x ∈ Rn | F1(x) = ・ ・ ・ = Fp(x) = 0} wherethe Jacobian of F1 = 0, . . . , Fp = 0 has generically rank p.The sequential complexity of Πi is of order L(nd)O(1)(min{(nd)cn, δi})2and its non-scalar parallel complexity is of order O(n( + lognd) log δi). Herec > 0 is a suitable universal constant. Thus, the complexity of Πi meetsthe already known worst case bounds. The particular feature of Πi is itspseudo-polynomial and intrinsic complexity character and this entails the bestruntime behavior one can hope for. The algorithm Πi works in the non-uniformdeterministic as well as in the uniform probabilistic complexity model. Wealso exhibit a worst case estimate of order (nn d)O(n) for the invariant δi. Thereader may notice that this bound overestimates the extrinsic complexity ofΠi, which is bounded by (nd)O(n).1. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/84684 Bank, Bernd; Giusti, Marc; Heintz, Joos Ulrich; Point searching in real singular complete intersection varieties: Algorithms of intrinsic complexity; American Mathematical Society; Mathematics of Computation; 83; 286; 3-2014; 873-897 0025-5718 1088-6842 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/84684 |
identifier_str_mv |
Bank, Bernd; Giusti, Marc; Heintz, Joos Ulrich; Point searching in real singular complete intersection varieties: Algorithms of intrinsic complexity; American Mathematical Society; Mathematics of Computation; 83; 286; 3-2014; 873-897 0025-5718 1088-6842 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/mcom/2014-83-286/S0025-5718-2013-02766-4/ info:eu-repo/semantics/altIdentifier/doi/10.1090/S0025-5718-2013-02766-4 info:eu-repo/semantics/altIdentifier/url/https://www.semanticscholar.org/paper/Point-searching-in-real-singularcomplete-varieties%3A-Bank-Giusti/d210e6eaea64b54986673b1fdb4d22318ad7080e |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270002898534400 |
score |
13.13397 |