A multivariate statistical process control procedure for BIAS identification in steady-state processes
- Autores
- Sanchez, Mabel Cristina; Alvarez Medina, Carlos Rodrigo; Brandolin, Adriana
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this article, a multivariate statistical process control (MSPC) strategy, devoted to bias identification and estimation for processes operating under steady-state conditions, is presented. The technique makes use of the D statistic to detect the presence of biases. Besides, it uses a new decomposition of this statistic to identify the faulty sensors. The strategy is based only on historical process data. Neither process modeling nor assumptions about the probability distribution of measurement errors are required. In contrast to methods based on fundamental models, both redundant and nonredundant measurements can be examined to identify the presence of biases. The performance of the proposed technique is evaluated using data-reconciliation benchmarks. Results indicate that the technique succeeds in identifying single and multiple biases and fulfills three paramount issues to practical implementation in commercial software: robustness, uncertainty, and efficiency. © 2008 American Institute of Chemical Engineers.
Fil: Sanchez, Mabel Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Alvarez Medina, Carlos Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Brandolin, Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina - Materia
-
Data Reconciliation
Statistical Analysis - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/62418
Ver los metadatos del registro completo
id |
CONICETDig_d600b4ac395129863a8939dfb788685b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/62418 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A multivariate statistical process control procedure for BIAS identification in steady-state processesSanchez, Mabel CristinaAlvarez Medina, Carlos RodrigoBrandolin, AdrianaData ReconciliationStatistical Analysishttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2In this article, a multivariate statistical process control (MSPC) strategy, devoted to bias identification and estimation for processes operating under steady-state conditions, is presented. The technique makes use of the D statistic to detect the presence of biases. Besides, it uses a new decomposition of this statistic to identify the faulty sensors. The strategy is based only on historical process data. Neither process modeling nor assumptions about the probability distribution of measurement errors are required. In contrast to methods based on fundamental models, both redundant and nonredundant measurements can be examined to identify the presence of biases. The performance of the proposed technique is evaluated using data-reconciliation benchmarks. Results indicate that the technique succeeds in identifying single and multiple biases and fulfills three paramount issues to practical implementation in commercial software: robustness, uncertainty, and efficiency. © 2008 American Institute of Chemical Engineers.Fil: Sanchez, Mabel Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Alvarez Medina, Carlos Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Brandolin, Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaJohn Wiley & Sons Inc2008-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/62418Sanchez, Mabel Cristina; Alvarez Medina, Carlos Rodrigo; Brandolin, Adriana; A multivariate statistical process control procedure for BIAS identification in steady-state processes; John Wiley & Sons Inc; Aiche Journal; 54; 8; 8-2008; 2082-20880001-1541CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/aic.11547info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/aic.11547info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:23:30Zoai:ri.conicet.gov.ar:11336/62418instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:23:30.675CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A multivariate statistical process control procedure for BIAS identification in steady-state processes |
title |
A multivariate statistical process control procedure for BIAS identification in steady-state processes |
spellingShingle |
A multivariate statistical process control procedure for BIAS identification in steady-state processes Sanchez, Mabel Cristina Data Reconciliation Statistical Analysis |
title_short |
A multivariate statistical process control procedure for BIAS identification in steady-state processes |
title_full |
A multivariate statistical process control procedure for BIAS identification in steady-state processes |
title_fullStr |
A multivariate statistical process control procedure for BIAS identification in steady-state processes |
title_full_unstemmed |
A multivariate statistical process control procedure for BIAS identification in steady-state processes |
title_sort |
A multivariate statistical process control procedure for BIAS identification in steady-state processes |
dc.creator.none.fl_str_mv |
Sanchez, Mabel Cristina Alvarez Medina, Carlos Rodrigo Brandolin, Adriana |
author |
Sanchez, Mabel Cristina |
author_facet |
Sanchez, Mabel Cristina Alvarez Medina, Carlos Rodrigo Brandolin, Adriana |
author_role |
author |
author2 |
Alvarez Medina, Carlos Rodrigo Brandolin, Adriana |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Data Reconciliation Statistical Analysis |
topic |
Data Reconciliation Statistical Analysis |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this article, a multivariate statistical process control (MSPC) strategy, devoted to bias identification and estimation for processes operating under steady-state conditions, is presented. The technique makes use of the D statistic to detect the presence of biases. Besides, it uses a new decomposition of this statistic to identify the faulty sensors. The strategy is based only on historical process data. Neither process modeling nor assumptions about the probability distribution of measurement errors are required. In contrast to methods based on fundamental models, both redundant and nonredundant measurements can be examined to identify the presence of biases. The performance of the proposed technique is evaluated using data-reconciliation benchmarks. Results indicate that the technique succeeds in identifying single and multiple biases and fulfills three paramount issues to practical implementation in commercial software: robustness, uncertainty, and efficiency. © 2008 American Institute of Chemical Engineers. Fil: Sanchez, Mabel Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina Fil: Alvarez Medina, Carlos Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina Fil: Brandolin, Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina |
description |
In this article, a multivariate statistical process control (MSPC) strategy, devoted to bias identification and estimation for processes operating under steady-state conditions, is presented. The technique makes use of the D statistic to detect the presence of biases. Besides, it uses a new decomposition of this statistic to identify the faulty sensors. The strategy is based only on historical process data. Neither process modeling nor assumptions about the probability distribution of measurement errors are required. In contrast to methods based on fundamental models, both redundant and nonredundant measurements can be examined to identify the presence of biases. The performance of the proposed technique is evaluated using data-reconciliation benchmarks. Results indicate that the technique succeeds in identifying single and multiple biases and fulfills three paramount issues to practical implementation in commercial software: robustness, uncertainty, and efficiency. © 2008 American Institute of Chemical Engineers. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/62418 Sanchez, Mabel Cristina; Alvarez Medina, Carlos Rodrigo; Brandolin, Adriana; A multivariate statistical process control procedure for BIAS identification in steady-state processes; John Wiley & Sons Inc; Aiche Journal; 54; 8; 8-2008; 2082-2088 0001-1541 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/62418 |
identifier_str_mv |
Sanchez, Mabel Cristina; Alvarez Medina, Carlos Rodrigo; Brandolin, Adriana; A multivariate statistical process control procedure for BIAS identification in steady-state processes; John Wiley & Sons Inc; Aiche Journal; 54; 8; 8-2008; 2082-2088 0001-1541 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1002/aic.11547 info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/aic.11547 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley & Sons Inc |
publisher.none.fl_str_mv |
John Wiley & Sons Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083382089351168 |
score |
13.22299 |