A robust clustering method for detection of abnormal situations in a process with multiple steady-state operation modes
- Autores
- Maestri, Mauricio Leonardo; Farall, Rodolfo Andres; Groisman, Pablo Jose; Cassanello, Miryan; Horowitz, Gabriel Ignacio
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Many classical multivariate statistical process monitoring (MSPM) techniques assume normal distribution of the data and independence of the samples. Very often, these assumptions do not hold for real industrial chemical processes, where multiple plant operating modes lead to multiple nominal operation regions. MSPM techniques that do not take account of this fact show increased false alarm and missing alarm rates. In this work, a simple fault detection tool based on a robust clustering technique is implemented to detect abnormal situations in an industrial installation with multiple operation modes. The tool is applied to three case studies: (i) a two-dimensional toy example, (ii) a realistic simulation usually used as a benchmark example, known as the Tennessee?Eastman Process, and (iii) real data from a methanol plant. The clustering technique on which the tool relies assumes that the observations come from multiple populations with a common covariance matrix (i.e., the same underlying physical relations). The clustering technique is also capable of coping with a certain percentage of outliers, thus avoiding the need of extensive preprocessing of the data. Moreover, improvements in detection capacity are found when comparing the results to those obtained with standard methodologies. Hence, the feasibility of implementing fault detection tools based on this technique in the field of chemical industrial processes is discussed.
Fil: Maestri, Mauricio Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina
Fil: Farall, Rodolfo Andres. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina
Fil: Groisman, Pablo Jose. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina
Fil: Cassanello, Miryan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina
Fil: Horowitz, Gabriel Ignacio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. YPF - Tecnología; Argentina - Materia
-
Fault detection
Multiple operating modes
Multivariate statistical process monitoring - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/248371
Ver los metadatos del registro completo
id |
CONICETDig_f132778f1acec7eb604951de7f363c08 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/248371 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A robust clustering method for detection of abnormal situations in a process with multiple steady-state operation modesMaestri, Mauricio LeonardoFarall, Rodolfo AndresGroisman, Pablo JoseCassanello, MiryanHorowitz, Gabriel IgnacioFault detectionMultiple operating modesMultivariate statistical process monitoringhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Many classical multivariate statistical process monitoring (MSPM) techniques assume normal distribution of the data and independence of the samples. Very often, these assumptions do not hold for real industrial chemical processes, where multiple plant operating modes lead to multiple nominal operation regions. MSPM techniques that do not take account of this fact show increased false alarm and missing alarm rates. In this work, a simple fault detection tool based on a robust clustering technique is implemented to detect abnormal situations in an industrial installation with multiple operation modes. The tool is applied to three case studies: (i) a two-dimensional toy example, (ii) a realistic simulation usually used as a benchmark example, known as the Tennessee?Eastman Process, and (iii) real data from a methanol plant. The clustering technique on which the tool relies assumes that the observations come from multiple populations with a common covariance matrix (i.e., the same underlying physical relations). The clustering technique is also capable of coping with a certain percentage of outliers, thus avoiding the need of extensive preprocessing of the data. Moreover, improvements in detection capacity are found when comparing the results to those obtained with standard methodologies. Hence, the feasibility of implementing fault detection tools based on this technique in the field of chemical industrial processes is discussed.Fil: Maestri, Mauricio Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; ArgentinaFil: Farall, Rodolfo Andres. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; ArgentinaFil: Groisman, Pablo Jose. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; ArgentinaFil: Cassanello, Miryan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; ArgentinaFil: Horowitz, Gabriel Ignacio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. YPF - Tecnología; ArgentinaPergamon-Elsevier Science Ltd2010-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/248371Maestri, Mauricio Leonardo; Farall, Rodolfo Andres; Groisman, Pablo Jose; Cassanello, Miryan; Horowitz, Gabriel Ignacio; A robust clustering method for detection of abnormal situations in a process with multiple steady-state operation modes; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 34; 2; 3-2010; 223-2310098-1354CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0098135409001331info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2009.05.012info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:23:46Zoai:ri.conicet.gov.ar:11336/248371instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:23:46.266CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A robust clustering method for detection of abnormal situations in a process with multiple steady-state operation modes |
title |
A robust clustering method for detection of abnormal situations in a process with multiple steady-state operation modes |
spellingShingle |
A robust clustering method for detection of abnormal situations in a process with multiple steady-state operation modes Maestri, Mauricio Leonardo Fault detection Multiple operating modes Multivariate statistical process monitoring |
title_short |
A robust clustering method for detection of abnormal situations in a process with multiple steady-state operation modes |
title_full |
A robust clustering method for detection of abnormal situations in a process with multiple steady-state operation modes |
title_fullStr |
A robust clustering method for detection of abnormal situations in a process with multiple steady-state operation modes |
title_full_unstemmed |
A robust clustering method for detection of abnormal situations in a process with multiple steady-state operation modes |
title_sort |
A robust clustering method for detection of abnormal situations in a process with multiple steady-state operation modes |
dc.creator.none.fl_str_mv |
Maestri, Mauricio Leonardo Farall, Rodolfo Andres Groisman, Pablo Jose Cassanello, Miryan Horowitz, Gabriel Ignacio |
author |
Maestri, Mauricio Leonardo |
author_facet |
Maestri, Mauricio Leonardo Farall, Rodolfo Andres Groisman, Pablo Jose Cassanello, Miryan Horowitz, Gabriel Ignacio |
author_role |
author |
author2 |
Farall, Rodolfo Andres Groisman, Pablo Jose Cassanello, Miryan Horowitz, Gabriel Ignacio |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Fault detection Multiple operating modes Multivariate statistical process monitoring |
topic |
Fault detection Multiple operating modes Multivariate statistical process monitoring |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Many classical multivariate statistical process monitoring (MSPM) techniques assume normal distribution of the data and independence of the samples. Very often, these assumptions do not hold for real industrial chemical processes, where multiple plant operating modes lead to multiple nominal operation regions. MSPM techniques that do not take account of this fact show increased false alarm and missing alarm rates. In this work, a simple fault detection tool based on a robust clustering technique is implemented to detect abnormal situations in an industrial installation with multiple operation modes. The tool is applied to three case studies: (i) a two-dimensional toy example, (ii) a realistic simulation usually used as a benchmark example, known as the Tennessee?Eastman Process, and (iii) real data from a methanol plant. The clustering technique on which the tool relies assumes that the observations come from multiple populations with a common covariance matrix (i.e., the same underlying physical relations). The clustering technique is also capable of coping with a certain percentage of outliers, thus avoiding the need of extensive preprocessing of the data. Moreover, improvements in detection capacity are found when comparing the results to those obtained with standard methodologies. Hence, the feasibility of implementing fault detection tools based on this technique in the field of chemical industrial processes is discussed. Fil: Maestri, Mauricio Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina Fil: Farall, Rodolfo Andres. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina Fil: Groisman, Pablo Jose. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina Fil: Cassanello, Miryan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina Fil: Horowitz, Gabriel Ignacio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. YPF - Tecnología; Argentina |
description |
Many classical multivariate statistical process monitoring (MSPM) techniques assume normal distribution of the data and independence of the samples. Very often, these assumptions do not hold for real industrial chemical processes, where multiple plant operating modes lead to multiple nominal operation regions. MSPM techniques that do not take account of this fact show increased false alarm and missing alarm rates. In this work, a simple fault detection tool based on a robust clustering technique is implemented to detect abnormal situations in an industrial installation with multiple operation modes. The tool is applied to three case studies: (i) a two-dimensional toy example, (ii) a realistic simulation usually used as a benchmark example, known as the Tennessee?Eastman Process, and (iii) real data from a methanol plant. The clustering technique on which the tool relies assumes that the observations come from multiple populations with a common covariance matrix (i.e., the same underlying physical relations). The clustering technique is also capable of coping with a certain percentage of outliers, thus avoiding the need of extensive preprocessing of the data. Moreover, improvements in detection capacity are found when comparing the results to those obtained with standard methodologies. Hence, the feasibility of implementing fault detection tools based on this technique in the field of chemical industrial processes is discussed. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/248371 Maestri, Mauricio Leonardo; Farall, Rodolfo Andres; Groisman, Pablo Jose; Cassanello, Miryan; Horowitz, Gabriel Ignacio; A robust clustering method for detection of abnormal situations in a process with multiple steady-state operation modes; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 34; 2; 3-2010; 223-231 0098-1354 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/248371 |
identifier_str_mv |
Maestri, Mauricio Leonardo; Farall, Rodolfo Andres; Groisman, Pablo Jose; Cassanello, Miryan; Horowitz, Gabriel Ignacio; A robust clustering method for detection of abnormal situations in a process with multiple steady-state operation modes; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 34; 2; 3-2010; 223-231 0098-1354 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0098135409001331 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2009.05.012 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083384706596864 |
score |
13.22299 |